Skip to main content

Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval

Abstract

Death results in changes in some metabolites in body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites and macromolecules. Metabolic changes may provide chemical markers to better determine the time since death (post-mortem interval), something that is challenging to establish with current observation-based methodologies. The aim of this research was to carry out a metabolic analysis of blood plasma post-mortem, in order to gain a more complete understanding of the biochemical changes that occur following death. Gas chromatography was used to conduct a survey of post-mortem rat blood. Sixty six metabolites were detected post-mortem. Twenty six of these [18 amino acids, glutathione (GSH), 4-Amino-n-butyric acid (GABA), glyoxylate, oxalate, hydroxyproline, creatinine, α-ketoglutarate and succinate] had increased concentrations post-mortem. The remaining 40 metabolites had concentrations that were not dependant on time. This study demonstrates the range of metabolic changes that occur post-mortem as well as identifying potential markers for estimating post-mortem interval.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Bergstrom, J., Furst, P., Noree, L.-O., & Vinnars, E. (1974). Intracellular free amino acid concentration in human muscle tissue. Journal of Applied Physiology, 36(6), 693–697.

    CAS  PubMed  Google Scholar 

  • Buchanan, M., & Anderson, G. S. (2001). Time since death: A review of the current status of methods used in the later postmortem interval. Canadian Society of Forensic Science Journal, 34(1), 1–22.

    Article  Google Scholar 

  • Chang, J. C., van der Hoeven, L. H., & Haddox, C. H. (1978). Glutathione reductase in the red blood cells. Annals of Clinical and Laboratory Science, 8(1), 23–29.

    CAS  PubMed  Google Scholar 

  • Clark, M. A., Worrell, M. B., & Pless, J. E. (1997). Postmortem changes in soft tissue. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 151–164). Florida: CRC Press.

    Google Scholar 

  • Comte, B., Vincent, G., Bouchard, B., Benderdour, M., & Des Rosiers, C. (2002). Reverse flux through cardiac NADP+-isocitrate dehydrogenase under normoxia and ischemia. American Journal of Physiology—Heart and Circulatory Physiology, 283(4), H1505–H1514. doi:10.1152/ajpheart.00287.2002.

    CAS  PubMed  Google Scholar 

  • Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death. In F. J. Schoen (Ed.), Robbins pathologic basis of disease (5th ed., pp. 4–11). Philadelphia: W.B. Saunders Company.

    Google Scholar 

  • Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., & Traganos, F. (1997). Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry, 27, 1–20.

    CAS  PubMed  Article  Google Scholar 

  • Des Rosiers, C., Donato, L. D., Comte, B., et al. (1995). Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver: Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. Journal of Biological Chemistry, 270(17), 10027–10036.

    CAS  PubMed  Article  Google Scholar 

  • Donaldson, A., & Lamont, I. (2013a). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences. doi:10.1080/00450618.2013.784356.

  • Donaldson, A., & Lamont, I. (2013b). Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE, 8(11), e82011.

    PubMed Central  PubMed  Article  Google Scholar 

  • Erdo, S. L., & Wolff, J. R. (1990). γ-Aminobutyric acid outside the mammalian brain. Journal of Neurochemistry, 54(2), 363–372.

    CAS  PubMed  Article  Google Scholar 

  • Filipp, F. V., Scott, D. A., Ronai, Z. E. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research, 25(3), 375–383.

    CAS  Article  Google Scholar 

  • Frezza, C., Zheng, L., Tennant, D. A., et al. (2011). Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE, 6(9), e24411.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gill-King, H. (1997). Chemical and ultrastructural aspects of decompositions. In W. Haglund & M. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 93–105). Florida: CRC Press.

    Google Scholar 

  • Holmes, R. P., & Assimos, D. G. (1998). Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. The Journal of Urology, 160(5), 1617–1624.

    CAS  PubMed  Article  Google Scholar 

  • Holmes, R. P., Knight, J., & Assimos, D. G.(2007) Origin of urinary oxalate. In A. P. Evan, J. E. Lingeman, & J. C. Williams Jr (Eds.), Renal Stone Disease. 1st annual international urolithiasis research symposium, Melville, NY: American Institute of Physics.

  • Janaway, R. C., Percival, S. L., & Wilson, A. S. (2009). Decomposition of human remains. In S. L. Percival (Ed.), Microbiology and aging: Clinical manifestation (pp. 313–334). New York: Hamana Press.

    Chapter  Google Scholar 

  • Jetter, W., & McLean, R. (1943). Biochemical changes in body fluids after death. American Journal of Clinical Pathology, 13, 178–185.

    CAS  Google Scholar 

  • Machaalani, R., Gozal, E., Berger, F., Waters, K. A., & Dematteis, M. (2010). Effects of post-mortem intervals on regional brain protein profiles in rats using SELDI-TOF-MS analysis. Neurochemistry International, 57(6), 655–661.

    CAS  PubMed  Article  Google Scholar 

  • Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. The American Journal of Pathology, 146(1), 3.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Micozzi, M. S. (1991). Postmortem changes in human and animal remains: A systematic approach. Springfield, IL: Charles C Thomas.

    Google Scholar 

  • Mullen, A., Wheaton, W., Jin, E., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481, 385–388.

    CAS  Google Scholar 

  • Perry, T. L., Hansen, S., & Gandham, S. S. (1981). Postmortem changes of amino compounds in human and rat brain. Journal of Neurochemistry, 36(2), 406–412.

    CAS  PubMed  Article  Google Scholar 

  • Poloz, Y. O., & O’Day, D. H. (2009). Determining time of death: Temperature-dependant postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. International Journal of Legal Medicine, 123, 305–314.

    PubMed  Article  Google Scholar 

  • Powers, R. H. (2005). The decomposition of human remains: A biochemical perspective. In J. Rich, D. E. Dean, & R. H. Powers (Eds.), Forensic medicine of the lower extremity: Human identification and trauma analysis of the thigh, leg, and foot (pp. 1–13). Totowa: The Humana Press Inc.

    Google Scholar 

  • Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics, 7(2), 128–139.

    CAS  PubMed  Article  Google Scholar 

  • Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methylchoroformate derivatization followed by gas chromatography mass spectroscopy. Nature Protocols, 5(10), 1709–1729.

    CAS  PubMed  Article  Google Scholar 

  • Swann, L., Childlow, G., Forbes, S., & Lewis, S. (2010a). Preliminary studies into characterisation of chemical markers of decomposition for geoforensics. Journal of Forensic Sciences, 55(2), 308–313.

    CAS  PubMed  Article  Google Scholar 

  • Swann, L., Forbes, S., & Lewis, S. (2010b). Analytical separations of mammalian decomposition products for forensic science: A review. Analytica Chimica Acta, 682, 9–22.

    CAS  PubMed  Article  Google Scholar 

  • Tumram, N. K., Bardale, R. V., & Dongre, A. P. (2011). Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. Forensic Science International, 204, 186–190.

    CAS  PubMed  Article  Google Scholar 

  • Uemura, K., Shintani-Ishida, K., Saka, K., et al. (2008). Biochemical blood markers and sampling sites in forensic autospy. Journal of Forensic and Legal Medicine, 15, 312–317.

    PubMed  Article  Google Scholar 

  • Vass, A., Barshick, S., Sega, G., et al. (2002). Decomposition chemistry of human remains: A new methodology for determining the postmortem interval. Journal of Forensic Sciences, 47(3), 542–553.

    CAS  PubMed  Google Scholar 

  • Vass, A. A., Bass, W. M., Wolt, J. D., & Foss, J. E. (1992). Time since death determination of human cadaver using soil solution. Journal of Forensic Sciences, 37(5), 1236–1253.

    CAS  PubMed  Google Scholar 

  • Viinamaki, J., Rasanen, I., Vuori, E., & Ojanpera, I. (2011). Elevated formic acid concentrations in putrefied post-mortem blood and urine samples. Forensic Science International, 208(1–3), 42–46.

    PubMed  Article  Google Scholar 

  • Villas-Boas, S. G., Delicado, D. G., Akesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and non-amino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138.

    CAS  PubMed  Article  Google Scholar 

  • Voet, D., & Voet, J. G. (2004). Biochemistry (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  • Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007a). Postmortem serum catecholamine levels in relation to the cause of death. Forensic Science International, 173(2–3), 122–129.

    CAS  PubMed  Article  Google Scholar 

  • Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007b). Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Legal Medicine, 9(3), 115–122.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Stephen Cordiner, (ESR, Porirua) and Dr. Rachel Fleming (ESR, Mt Albert) for their kind suggestions and useful comments throughout the course of this study, Dr. Silas Villas-Boas, Margarita Markovskaya and Dung Nguyen from the University of Auckland for the assistance and technical support throughout the GC–MS analysis, and Dr. John Schofield, Lesley Schofield and Dave Matthews at the University of Otago, for the handling and euthanasia of the rats used in this study. Andrea Donaldson was supported by a Te Tipu Putaiao PhD Scholarship from The Ministry of Science and Innovation, Wellington, New Zealand.

Conflict of interest

Author Andrea Donaldson and author Iain Lamont declare that they have no conflict of interest with the organization that supported the research.

Informed consent statement

All institutional and national guidelines for the care and use of laboratory animals were followed. No human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Donaldson or I. L. Lamont.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

11306_2014_691_MOESM2_ESM.eps

Supplementary material 2 (EPS 85 kb) Changes in the concentrations of glyoxylate, oxalate and hydroxyproline post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown

11306_2014_691_MOESM3_ESM.eps

Supplementary material 3 (EPS 90 kb) Changes in the concentrations of α-ketoglutarate, succinate and fumarate post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown

11306_2014_691_MOESM4_ESM.eps

Supplementary material 4 (EPS 76 kb) Changes in the concentrations of creatinine and lactate post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donaldson, A.E., Lamont, I.L. Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval. Metabolomics 11, 237–245 (2015). https://doi.org/10.1007/s11306-014-0691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0691-5

Keywords

  • Post-mortem interval
  • Biochemical markers
  • Blood metabolites
  • Hypoxia
  • GC–MS
  • Forensic science
  • Amino acids