Bergstrom, J., Furst, P., Noree, L.-O., & Vinnars, E. (1974). Intracellular free amino acid concentration in human muscle tissue. Journal of Applied Physiology,
36(6), 693–697.
CAS
PubMed
Google Scholar
Buchanan, M., & Anderson, G. S. (2001). Time since death: A review of the current status of methods used in the later postmortem interval. Canadian Society of Forensic Science Journal,
34(1), 1–22.
Article
Google Scholar
Chang, J. C., van der Hoeven, L. H., & Haddox, C. H. (1978). Glutathione reductase in the red blood cells. Annals of Clinical and Laboratory Science,
8(1), 23–29.
CAS
PubMed
Google Scholar
Clark, M. A., Worrell, M. B., & Pless, J. E. (1997). Postmortem changes in soft tissue. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 151–164). Florida: CRC Press.
Google Scholar
Comte, B., Vincent, G., Bouchard, B., Benderdour, M., & Des Rosiers, C. (2002). Reverse flux through cardiac NADP+-isocitrate dehydrogenase under normoxia and ischemia. American Journal of Physiology—Heart and Circulatory Physiology,
283(4), H1505–H1514. doi:10.1152/ajpheart.00287.2002.
CAS
PubMed
Google Scholar
Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death. In F. J. Schoen (Ed.), Robbins pathologic basis of disease (5th ed., pp. 4–11). Philadelphia: W.B. Saunders Company.
Google Scholar
Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., & Traganos, F. (1997). Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry,
27, 1–20.
CAS
PubMed
Article
Google Scholar
Des Rosiers, C., Donato, L. D., Comte, B., et al. (1995). Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver: Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. Journal of Biological Chemistry,
270(17), 10027–10036.
CAS
PubMed
Article
Google Scholar
Donaldson, A., & Lamont, I. (2013a). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences. doi:10.1080/00450618.2013.784356.
Donaldson, A., & Lamont, I. (2013b). Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE,
8(11), e82011.
PubMed Central
PubMed
Article
Google Scholar
Erdo, S. L., & Wolff, J. R. (1990). γ-Aminobutyric acid outside the mammalian brain. Journal of Neurochemistry,
54(2), 363–372.
CAS
PubMed
Article
Google Scholar
Filipp, F. V., Scott, D. A., Ronai, Z. E. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research,
25(3), 375–383.
CAS
Article
Google Scholar
Frezza, C., Zheng, L., Tennant, D. A., et al. (2011). Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE,
6(9), e24411.
CAS
PubMed Central
PubMed
Article
Google Scholar
Gill-King, H. (1997). Chemical and ultrastructural aspects of decompositions. In W. Haglund & M. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 93–105). Florida: CRC Press.
Google Scholar
Holmes, R. P., & Assimos, D. G. (1998). Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. The Journal of Urology,
160(5), 1617–1624.
CAS
PubMed
Article
Google Scholar
Holmes, R. P., Knight, J., & Assimos, D. G.(2007) Origin of urinary oxalate. In A. P. Evan, J. E. Lingeman, & J. C. Williams Jr (Eds.), Renal Stone Disease. 1st annual international urolithiasis research symposium, Melville, NY: American Institute of Physics.
Janaway, R. C., Percival, S. L., & Wilson, A. S. (2009). Decomposition of human remains. In S. L. Percival (Ed.), Microbiology and aging: Clinical manifestation (pp. 313–334). New York: Hamana Press.
Chapter
Google Scholar
Jetter, W., & McLean, R. (1943). Biochemical changes in body fluids after death. American Journal of Clinical Pathology,
13, 178–185.
CAS
Google Scholar
Machaalani, R., Gozal, E., Berger, F., Waters, K. A., & Dematteis, M. (2010). Effects of post-mortem intervals on regional brain protein profiles in rats using SELDI-TOF-MS analysis. Neurochemistry International,
57(6), 655–661.
CAS
PubMed
Article
Google Scholar
Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. The American Journal of Pathology,
146(1), 3.
CAS
PubMed Central
PubMed
Google Scholar
Micozzi, M. S. (1991). Postmortem changes in human and animal remains: A systematic approach. Springfield, IL: Charles C Thomas.
Google Scholar
Mullen, A., Wheaton, W., Jin, E., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature,
481, 385–388.
CAS
Google Scholar
Perry, T. L., Hansen, S., & Gandham, S. S. (1981). Postmortem changes of amino compounds in human and rat brain. Journal of Neurochemistry,
36(2), 406–412.
CAS
PubMed
Article
Google Scholar
Poloz, Y. O., & O’Day, D. H. (2009). Determining time of death: Temperature-dependant postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. International Journal of Legal Medicine,
123, 305–314.
PubMed
Article
Google Scholar
Powers, R. H. (2005). The decomposition of human remains: A biochemical perspective. In J. Rich, D. E. Dean, & R. H. Powers (Eds.), Forensic medicine of the lower extremity: Human identification and trauma analysis of the thigh, leg, and foot (pp. 1–13). Totowa: The Humana Press Inc.
Google Scholar
Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics,
7(2), 128–139.
CAS
PubMed
Article
Google Scholar
Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methylchoroformate derivatization followed by gas chromatography mass spectroscopy. Nature Protocols,
5(10), 1709–1729.
CAS
PubMed
Article
Google Scholar
Swann, L., Childlow, G., Forbes, S., & Lewis, S. (2010a). Preliminary studies into characterisation of chemical markers of decomposition for geoforensics. Journal of Forensic Sciences,
55(2), 308–313.
CAS
PubMed
Article
Google Scholar
Swann, L., Forbes, S., & Lewis, S. (2010b). Analytical separations of mammalian decomposition products for forensic science: A review. Analytica Chimica Acta,
682, 9–22.
CAS
PubMed
Article
Google Scholar
Tumram, N. K., Bardale, R. V., & Dongre, A. P. (2011). Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. Forensic Science International,
204, 186–190.
CAS
PubMed
Article
Google Scholar
Uemura, K., Shintani-Ishida, K., Saka, K., et al. (2008). Biochemical blood markers and sampling sites in forensic autospy. Journal of Forensic and Legal Medicine,
15, 312–317.
PubMed
Article
Google Scholar
Vass, A., Barshick, S., Sega, G., et al. (2002). Decomposition chemistry of human remains: A new methodology for determining the postmortem interval. Journal of Forensic Sciences,
47(3), 542–553.
CAS
PubMed
Google Scholar
Vass, A. A., Bass, W. M., Wolt, J. D., & Foss, J. E. (1992). Time since death determination of human cadaver using soil solution. Journal of Forensic Sciences,
37(5), 1236–1253.
CAS
PubMed
Google Scholar
Viinamaki, J., Rasanen, I., Vuori, E., & Ojanpera, I. (2011). Elevated formic acid concentrations in putrefied post-mortem blood and urine samples. Forensic Science International,
208(1–3), 42–46.
PubMed
Article
Google Scholar
Villas-Boas, S. G., Delicado, D. G., Akesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and non-amino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry,
322, 134–138.
CAS
PubMed
Article
Google Scholar
Voet, D., & Voet, J. G. (2004). Biochemistry (3rd ed.). Hoboken: Wiley.
Google Scholar
Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007a). Postmortem serum catecholamine levels in relation to the cause of death. Forensic Science International,
173(2–3), 122–129.
CAS
PubMed
Article
Google Scholar
Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007b). Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Legal Medicine,
9(3), 115–122.
CAS
PubMed
Article
Google Scholar