, Volume 11, Issue 1, pp 237–245 | Cite as

Metabolomics of post-mortem blood: identifying potential markers of post-mortem interval

  • A. E. DonaldsonEmail author
  • I. L. LamontEmail author
Original Article


Death results in changes in some metabolites in body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites and macromolecules. Metabolic changes may provide chemical markers to better determine the time since death (post-mortem interval), something that is challenging to establish with current observation-based methodologies. The aim of this research was to carry out a metabolic analysis of blood plasma post-mortem, in order to gain a more complete understanding of the biochemical changes that occur following death. Gas chromatography was used to conduct a survey of post-mortem rat blood. Sixty six metabolites were detected post-mortem. Twenty six of these [18 amino acids, glutathione (GSH), 4-Amino-n-butyric acid (GABA), glyoxylate, oxalate, hydroxyproline, creatinine, α-ketoglutarate and succinate] had increased concentrations post-mortem. The remaining 40 metabolites had concentrations that were not dependant on time. This study demonstrates the range of metabolic changes that occur post-mortem as well as identifying potential markers for estimating post-mortem interval.


Post-mortem interval Biochemical markers Blood metabolites Hypoxia GC–MS Forensic science Amino acids 



The authors wish to thank Dr. Stephen Cordiner, (ESR, Porirua) and Dr. Rachel Fleming (ESR, Mt Albert) for their kind suggestions and useful comments throughout the course of this study, Dr. Silas Villas-Boas, Margarita Markovskaya and Dung Nguyen from the University of Auckland for the assistance and technical support throughout the GC–MS analysis, and Dr. John Schofield, Lesley Schofield and Dave Matthews at the University of Otago, for the handling and euthanasia of the rats used in this study. Andrea Donaldson was supported by a Te Tipu Putaiao PhD Scholarship from The Ministry of Science and Innovation, Wellington, New Zealand.

Conflict of interest

Author Andrea Donaldson and author Iain Lamont declare that they have no conflict of interest with the organization that supported the research.

Informed consent statement

All institutional and national guidelines for the care and use of laboratory animals were followed. No human studies were carried out by the authors for this article.

Supplementary material

11306_2014_691_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 28 kb)
11306_2014_691_MOESM2_ESM.eps (85 kb)
Supplementary material 2 (EPS 85 kb) Changes in the concentrations of glyoxylate, oxalate and hydroxyproline post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown
11306_2014_691_MOESM3_ESM.eps (90 kb)
Supplementary material 3 (EPS 90 kb) Changes in the concentrations of α-ketoglutarate, succinate and fumarate post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown
11306_2014_691_MOESM4_ESM.eps (76 kb)
Supplementary material 4 (EPS 76 kb) Changes in the concentrations of creatinine and lactate post-mortem. The relative concentrations shown on a log scale are averages of blood from four rats with standard deviations shown


  1. Bergstrom, J., Furst, P., Noree, L.-O., & Vinnars, E. (1974). Intracellular free amino acid concentration in human muscle tissue. Journal of Applied Physiology, 36(6), 693–697.PubMedGoogle Scholar
  2. Buchanan, M., & Anderson, G. S. (2001). Time since death: A review of the current status of methods used in the later postmortem interval. Canadian Society of Forensic Science Journal, 34(1), 1–22.CrossRefGoogle Scholar
  3. Chang, J. C., van der Hoeven, L. H., & Haddox, C. H. (1978). Glutathione reductase in the red blood cells. Annals of Clinical and Laboratory Science, 8(1), 23–29.PubMedGoogle Scholar
  4. Clark, M. A., Worrell, M. B., & Pless, J. E. (1997). Postmortem changes in soft tissue. In W. D. Haglund & M. H. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 151–164). Florida: CRC Press.Google Scholar
  5. Comte, B., Vincent, G., Bouchard, B., Benderdour, M., & Des Rosiers, C. (2002). Reverse flux through cardiac NADP+-isocitrate dehydrogenase under normoxia and ischemia. American Journal of Physiology—Heart and Circulatory Physiology, 283(4), H1505–H1514. doi: 10.1152/ajpheart.00287.2002.PubMedGoogle Scholar
  6. Cotran, R. S., Kumar, V., & Robbins, S. L. (1994). Cellular injury and cellular death. In F. J. Schoen (Ed.), Robbins pathologic basis of disease (5th ed., pp. 4–11). Philadelphia: W.B. Saunders Company.Google Scholar
  7. Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., & Traganos, F. (1997). Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry, 27, 1–20.PubMedCrossRefGoogle Scholar
  8. Des Rosiers, C., Donato, L. D., Comte, B., et al. (1995). Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver: Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis. Journal of Biological Chemistry, 270(17), 10027–10036.PubMedCrossRefGoogle Scholar
  9. Donaldson, A., & Lamont, I. (2013a). Estimation of post-mortem interval using biochemical markers. Australian Journal of Forensic Sciences. doi: 10.1080/00450618.2013.784356.
  10. Donaldson, A., & Lamont, I. (2013b). Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE, 8(11), e82011.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Erdo, S. L., & Wolff, J. R. (1990). γ-Aminobutyric acid outside the mammalian brain. Journal of Neurochemistry, 54(2), 363–372.PubMedCrossRefGoogle Scholar
  12. Filipp, F. V., Scott, D. A., Ronai, Z. E. A., Osterman, A. L., & Smith, J. W. (2012). Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell & Melanoma Research, 25(3), 375–383.CrossRefGoogle Scholar
  13. Frezza, C., Zheng, L., Tennant, D. A., et al. (2011). Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS ONE, 6(9), e24411.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gill-King, H. (1997). Chemical and ultrastructural aspects of decompositions. In W. Haglund & M. Sorg (Eds.), Forensic taphonomy: The postmortem fate of human remains (pp. 93–105). Florida: CRC Press.Google Scholar
  15. Holmes, R. P., & Assimos, D. G. (1998). Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. The Journal of Urology, 160(5), 1617–1624.PubMedCrossRefGoogle Scholar
  16. Holmes, R. P., Knight, J., & Assimos, D. G.(2007) Origin of urinary oxalate. In A. P. Evan, J. E. Lingeman, & J. C. Williams Jr (Eds.), Renal Stone Disease. 1st annual international urolithiasis research symposium, Melville, NY: American Institute of Physics.Google Scholar
  17. Janaway, R. C., Percival, S. L., & Wilson, A. S. (2009). Decomposition of human remains. In S. L. Percival (Ed.), Microbiology and aging: Clinical manifestation (pp. 313–334). New York: Hamana Press.CrossRefGoogle Scholar
  18. Jetter, W., & McLean, R. (1943). Biochemical changes in body fluids after death. American Journal of Clinical Pathology, 13, 178–185.Google Scholar
  19. Machaalani, R., Gozal, E., Berger, F., Waters, K. A., & Dematteis, M. (2010). Effects of post-mortem intervals on regional brain protein profiles in rats using SELDI-TOF-MS analysis. Neurochemistry International, 57(6), 655–661.PubMedCrossRefGoogle Scholar
  20. Majno, G., & Joris, I. (1995). Apoptosis, oncosis, and necrosis: An overview of cell death. The American Journal of Pathology, 146(1), 3.PubMedCentralPubMedGoogle Scholar
  21. Micozzi, M. S. (1991). Postmortem changes in human and animal remains: A systematic approach. Springfield, IL: Charles C Thomas.Google Scholar
  22. Mullen, A., Wheaton, W., Jin, E., et al. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481, 385–388.Google Scholar
  23. Perry, T. L., Hansen, S., & Gandham, S. S. (1981). Postmortem changes of amino compounds in human and rat brain. Journal of Neurochemistry, 36(2), 406–412.PubMedCrossRefGoogle Scholar
  24. Poloz, Y. O., & O’Day, D. H. (2009). Determining time of death: Temperature-dependant postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. International Journal of Legal Medicine, 123, 305–314.PubMedCrossRefGoogle Scholar
  25. Powers, R. H. (2005). The decomposition of human remains: A biochemical perspective. In J. Rich, D. E. Dean, & R. H. Powers (Eds.), Forensic medicine of the lower extremity: Human identification and trauma analysis of the thigh, leg, and foot (pp. 1–13). Totowa: The Humana Press Inc.Google Scholar
  26. Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics, 7(2), 128–139.PubMedCrossRefGoogle Scholar
  27. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Boas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methylchoroformate derivatization followed by gas chromatography mass spectroscopy. Nature Protocols, 5(10), 1709–1729.PubMedCrossRefGoogle Scholar
  28. Swann, L., Childlow, G., Forbes, S., & Lewis, S. (2010a). Preliminary studies into characterisation of chemical markers of decomposition for geoforensics. Journal of Forensic Sciences, 55(2), 308–313.PubMedCrossRefGoogle Scholar
  29. Swann, L., Forbes, S., & Lewis, S. (2010b). Analytical separations of mammalian decomposition products for forensic science: A review. Analytica Chimica Acta, 682, 9–22.PubMedCrossRefGoogle Scholar
  30. Tumram, N. K., Bardale, R. V., & Dongre, A. P. (2011). Postmortem analysis of synovial fluid and vitreous humour for determination of death interval: A comparative study. Forensic Science International, 204, 186–190.PubMedCrossRefGoogle Scholar
  31. Uemura, K., Shintani-Ishida, K., Saka, K., et al. (2008). Biochemical blood markers and sampling sites in forensic autospy. Journal of Forensic and Legal Medicine, 15, 312–317.PubMedCrossRefGoogle Scholar
  32. Vass, A., Barshick, S., Sega, G., et al. (2002). Decomposition chemistry of human remains: A new methodology for determining the postmortem interval. Journal of Forensic Sciences, 47(3), 542–553.PubMedGoogle Scholar
  33. Vass, A. A., Bass, W. M., Wolt, J. D., & Foss, J. E. (1992). Time since death determination of human cadaver using soil solution. Journal of Forensic Sciences, 37(5), 1236–1253.PubMedGoogle Scholar
  34. Viinamaki, J., Rasanen, I., Vuori, E., & Ojanpera, I. (2011). Elevated formic acid concentrations in putrefied post-mortem blood and urine samples. Forensic Science International, 208(1–3), 42–46.PubMedCrossRefGoogle Scholar
  35. Villas-Boas, S. G., Delicado, D. G., Akesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and non-amino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138.PubMedCrossRefGoogle Scholar
  36. Voet, D., & Voet, J. G. (2004). Biochemistry (3rd ed.). Hoboken: Wiley.Google Scholar
  37. Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007a). Postmortem serum catecholamine levels in relation to the cause of death. Forensic Science International, 173(2–3), 122–129.PubMedCrossRefGoogle Scholar
  38. Zhu, B.-L., Ishikawa, T., Michiue, T., et al. (2007b). Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death. Legal Medicine, 9(3), 115–122.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations