Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells

Abstract

Lactate dehydrogenase A (LDHA) is the enzyme that converts pyruvate to lactate and oxidizes the reduced form of nicotinamide adenine dinucleotide to NAD+. Several human cancers including the pancreas display elevated expression of LDHA. Because of its essential role in cancer metabolism, LDHA has been considered to be a potential target for cancer therapy. Recently, we have shown that a green tea extract significantly down-regulated LDHA in HPAF-II pancreatic cancer cells using global proteomics profiling. The present study is to investigate how EGCG, a major biological active constituent of green tea, targets the metabolism of human pancreatic adenocarcinoma MIA PaCa-2 cells. We compared the effect of EGCG to that of oxamate, an inhibitor of LDHA, on the multiple metabolic pathways as measured by extracellular lactate production, glucose consumption, as well as intracellular aspartate and glutamate production, fatty acid synthesis, acetyl-CoA, RNA ribose and deoxyribose. Specific metabolic pathways were studied using [1, 2-13C2]-d-glucose as the single precursor metabolic tracer. Isotope incorporations in metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and stable isotope-based dynamic metabolic profiling (SiDMAP). We found that the EGCG treatment of MIA PaCa-2 cells significantly reduced lactate production, anaerobic glycolysis, glucose consumption and glycolytic rate that are comparable to the inhibition of LDHA by oxamate treatment. Significant changes in intracellular glucose carbon re-distribution among major glucose-utilizing macromolecule biosynthesis pathways in response to EGCG and oxamate treatment were observed. The inhibition of LDHA by EGCG or oxamate impacts on various pathways of the cellular metabolic network and significantly modifies the cancer metabolic phenotype. These results suggest that phytochemical EGCG and LDHA inhibitor oxamate confer their anti-cancer activities by disrupting the balance of flux throughout the cellular metabolic network.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

EGCG:

(−)-Epigallocatechin gallate

GTE:

Green tea extract

LDHA:

Lactate dehydrogenase A

References

  1. Bardeesy, N., & DePinho, R. A. (2002). Pancreatic cancer biology and genetics. Nature Reviews Cancer, 2(12), 897–909. doi:10.1038/nrc949.

    CAS  PubMed  Article  Google Scholar 

  2. Boren, J., Cascante, M., Marin, S., Comin-Anduix, B., Centelles, J. J., Lim, S., et al. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. Journal of Biological Chemistry, 276(41), 37747–37753. doi:10.1074/jbc.M105796200.

    CAS  PubMed  Google Scholar 

  3. Boros, L. G., Bassilian, S., Lim, S., & Lee, W. N. (2001). Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: A new mechanism of controlling tumor growth. Pancreas, 22(1), 1–7.

    CAS  PubMed  Article  Google Scholar 

  4. Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., et al. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57(19), 4242–4248.

    CAS  PubMed  Google Scholar 

  5. Boros, L. G., Torday, J. S., Lim, S., Bassilian, S., Cascante, M., & Lee, W. N. (2000). Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Research, 60(5), 1183–1185.

    CAS  PubMed  Google Scholar 

  6. Deberardinis, R. J., Sayed, N., Ditsworth, D., & Thompson, C. B. (2008). Brick by brick: Metabolism and tumor cell growth. Current Opinion in Genetics & Development, 18(1), 54–61. doi:10.1016/j.gde.2008.02.003.

    CAS  Article  Google Scholar 

  7. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6), 425–434. doi:10.1016/j.ccr.2006.04.023.

    CAS  PubMed  Article  Google Scholar 

  8. Goldman, R. D., Kaplan, N. O., & Hall, T. C. (1964). Lactic dehydrogenase in human neoplastic tissues. Cancer Research, 24, 389–399.

    CAS  PubMed  Google Scholar 

  9. Granchi, C., Roy, S., Giacomelli, C., Macchia, M., Tuccinardi, T., Martinelli, A., et al. (2011). Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. Journal of Medicinal Chemistry, 54(6), 1599–1612. doi:10.1021/jm101007q.

    CAS  PubMed  Article  Google Scholar 

  10. Harris, D. M., Li, L., Chen, M., Lagunero, T. L., Go, V. L. W., & Boros, L. G. (2012). Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in MIA PaCa-2 cells: A comparative glucose tracer study with the fatty acid synthase inhibitor C75. Metabolomics, 8(2), 201–210.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  11. Hiura, A., Tsutsumi, M., & Satake, K. (1997). Inhibitory effect of green tea extract on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer in Syrian hamsters. Pancreas, 15(3), 272–277.

    CAS  PubMed  Article  Google Scholar 

  12. Hsu, P. P., & Sabatini, D. M. (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5), 703–707. doi:10.1016/j.cell.2008.08.021.

    CAS  PubMed  Article  Google Scholar 

  13. Jeoung, N. H., Rahimi, Y., Wu, P., Lee, W. N., & Harris, R. A. (2012). Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice. Biochemical Journal, 443(3), 829–839. doi:10.1042/BJ20112197.

    CAS  PubMed  Article  Google Scholar 

  14. Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548. doi:10.1101/gad.1756509.

    CAS  Article  Google Scholar 

  15. Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. doi:10.1073/pnas.0914433107.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Lee, W. N. (1996). Stable isotopes and mass isotopomer study of fatty acid and cholesterol synthesis. A review of the MIDA approach. Advances in Experimental Medicine and Biology, 399, 95–114.

    CAS  PubMed  Article  Google Scholar 

  17. Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S., Lim, S., & Cascante, M. (1998). Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. American Journal of Physiology, 274(5 Pt 1), E843–E851.

    CAS  PubMed  Google Scholar 

  18. Lee, W. N., Edmond, J., Bassilian, S., & Morrow, J. W. (1996). Mass isotopomer study of glutamine oxidation and synthesis in primary culture of astrocytes. Developmental Neuroscience, 18(5–6), 469–477.

    CAS  PubMed  Article  Google Scholar 

  19. Lee, W. N., Guo, P., Lim, S., Bassilian, S., Lee, S. T., Boren, J., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91(12), 2094–2100. doi:10.1038/sj.bjc.6602243.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Leimer, K. R., Rice, R. H., & Gehrke, C. W. (1977). Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. Journal of Chromatography, 141(2), 121–144.

    CAS  PubMed  Article  Google Scholar 

  21. Li, Y., Zhang, T., Jiang, Y., Lee, H. F., Schwartz, S. J., & Sun, D. (2009). (−)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Molecular Pharmaceutics, 6(4), 1152–1159. doi:10.1021/mp900037p.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Liu, S., Wang, X. J., Liu, Y., & Cui, Y. F. (2013). PI3 K/AKT/mTOR signaling is involved in (−)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. American Journal of Chinese Medicine, 41(3), 629–642. doi:10.1142/S0192415X13500444.

    CAS  PubMed  Article  Google Scholar 

  23. Ma, D., Wang, J., Zhao, Y., Lee, W. N., Xiao, J., Go, V. L., et al. (2012). Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas, 41(3), 397–408. doi:10.1097/MPA.0b013e318236f022.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Majima, T., Tsutsumi, M., Nishino, H., Tsunoda, T., & Konishi, Y. (1998). Inhibitory effects of beta-carotene, palm carotene, and green tea polyphenols on pancreatic carcinogenesis initiated by N-nitorsobis(2-oxopropyl)amine in Syrian golden hamsters. Pancreas, 16(1), 13–18.

    CAS  PubMed  Article  Google Scholar 

  25. Papaconstantinou, J., & Colowick, S. P. (1961). The role of glycolysis in the growth of tumor cells. II. The effect of oxamic acid on the growth of HeLa cells in tissue culture. Journal of Biological Chemistry, 236, 285–288.

    CAS  PubMed  Google Scholar 

  26. Qanungo, S., Das, M., Haldar, S., & Basu, A. (2005). Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis, 26(5), 958–967. doi:10.1093/carcin/bgi040.

    CAS  PubMed  Article  Google Scholar 

  27. Ramos-Montoya, A., Lee, W. N., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhyna, M. V., et al. (2006). Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer, 119(12), 2733–2741. doi:10.1002/ijc.22227.

    CAS  Article  Google Scholar 

  28. Rong, Y., Wu, W., Ni, X., Kuang, T., Jin, D., Wang, D., et al. (2013). Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biology, 34(3), 1523–1530. doi:10.1007/s13277-013-0679-1.

    CAS  PubMed  Article  Google Scholar 

  29. Sanchez-Tena, S., Alcarraz-Vizan, G., Marin, S., Torres, J. L., & Cascante, M. (2013). Epicatechin gallate impairs colon cancer cell metabolic productivity. Journal of Agriculture and Food Chemistry, 61(18), 4310–4317. doi:10.1021/jf3052785.

    CAS  Article  Google Scholar 

  30. Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271(51), 32529–32537.

    CAS  PubMed  Article  Google Scholar 

  31. Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.

    PubMed  Article  Google Scholar 

  32. Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768–780.

    CAS  PubMed  Article  Google Scholar 

  33. Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., et al. (2002). Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate. Pancreas, 25(1), 45–48.

    PubMed  Article  Google Scholar 

  34. Thornburg, J. M., Nelson, K. K., Clem, B. F., Lane, A. N., Arumugam, S., Simmons, A., et al. (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Research, 10(5), R84. doi:10.1186/bcr2154.

    PubMed Central  PubMed  Article  Google Scholar 

  35. Wahjudi, P. N., Patterson, M. E., Lim, S., Yee, J. K., Mao, C. S., & Lee, W. N. (2010). Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clinical Biochemistry, 43(1–2), 198–207. doi:10.1016/j.clinbiochem.2009.08.028.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Wang, J., Zhang, X., Ma, D., Lee, W. N., Xiao, J., Zhao, Y., et al. (2013). Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Experimental Hematology & Oncology, 2(1), 18. doi:10.1186/2162-3619-2-18.

    Article  Google Scholar 

  37. Yang, C. S., Wang, X., Lu, G., & Picinich, S. C. (2009). Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer, 9(6), 429–439. doi:10.1038/nrc2641.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  38. Yasui, K., Tanabe, H., Miyoshi, N., Suzuki, T., Goto, S., Taguchi, K., et al. (2011). Effects of (−)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. Biomedical Research, 32(5), 313–320.

    CAS  PubMed  Article  Google Scholar 

  39. Zhang, H., Cao, R., Lee, W. N., Deng, C., Zhao, Y., Lappe, J., et al. (2010). Inhibition of protein phosphorylation in MIA pancreatic cancer cells: Confluence of metabolic and signaling pathways. Journal of Proteome Research, 9(2), 980–989. doi:10.1021/pr9008805.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  40. Zhang, L., Pang, E., Loo, R. R., Rao, J., Go, V. L., Loo, J. A., et al. (2011). Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics, 11(24), 4638–4647. doi:10.1002/pmic.201100242.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (P01AT003960) and the Hirshberg Foundation for Pancreatic Cancer Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wai-Nang Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Zhang, L., Yee, J.K. et al. Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells. Metabolomics 11, 71–80 (2015). https://doi.org/10.1007/s11306-014-0672-8

Download citation

Keywords

  • EGCG
  • Oxamate
  • Human pancreatic cancer MIA PaCa-2 cells
  • Tracer based metabolomics