, Volume 11, Issue 1, pp 71–80 | Cite as

Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells

  • Qing-Yi Lu
  • Lifeng Zhang
  • Jennifer K. Yee
  • Vay-Liang W. Go
  • Wai-Nang LeeEmail author
Original Article


Lactate dehydrogenase A (LDHA) is the enzyme that converts pyruvate to lactate and oxidizes the reduced form of nicotinamide adenine dinucleotide to NAD+. Several human cancers including the pancreas display elevated expression of LDHA. Because of its essential role in cancer metabolism, LDHA has been considered to be a potential target for cancer therapy. Recently, we have shown that a green tea extract significantly down-regulated LDHA in HPAF-II pancreatic cancer cells using global proteomics profiling. The present study is to investigate how EGCG, a major biological active constituent of green tea, targets the metabolism of human pancreatic adenocarcinoma MIA PaCa-2 cells. We compared the effect of EGCG to that of oxamate, an inhibitor of LDHA, on the multiple metabolic pathways as measured by extracellular lactate production, glucose consumption, as well as intracellular aspartate and glutamate production, fatty acid synthesis, acetyl-CoA, RNA ribose and deoxyribose. Specific metabolic pathways were studied using [1, 2-13C2]-d-glucose as the single precursor metabolic tracer. Isotope incorporations in metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and stable isotope-based dynamic metabolic profiling (SiDMAP). We found that the EGCG treatment of MIA PaCa-2 cells significantly reduced lactate production, anaerobic glycolysis, glucose consumption and glycolytic rate that are comparable to the inhibition of LDHA by oxamate treatment. Significant changes in intracellular glucose carbon re-distribution among major glucose-utilizing macromolecule biosynthesis pathways in response to EGCG and oxamate treatment were observed. The inhibition of LDHA by EGCG or oxamate impacts on various pathways of the cellular metabolic network and significantly modifies the cancer metabolic phenotype. These results suggest that phytochemical EGCG and LDHA inhibitor oxamate confer their anti-cancer activities by disrupting the balance of flux throughout the cellular metabolic network.


EGCG Oxamate Human pancreatic cancer MIA PaCa-2 cells Tracer based metabolomics 



(−)-Epigallocatechin gallate


Green tea extract


Lactate dehydrogenase A



This work was supported by the National Institutes of Health (P01AT003960) and the Hirshberg Foundation for Pancreatic Cancer Research.


  1. Bardeesy, N., & DePinho, R. A. (2002). Pancreatic cancer biology and genetics. Nature Reviews Cancer, 2(12), 897–909. doi: 10.1038/nrc949.PubMedCrossRefGoogle Scholar
  2. Boren, J., Cascante, M., Marin, S., Comin-Anduix, B., Centelles, J. J., Lim, S., et al. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. Journal of Biological Chemistry, 276(41), 37747–37753. doi: 10.1074/jbc.M105796200.PubMedGoogle Scholar
  3. Boros, L. G., Bassilian, S., Lim, S., & Lee, W. N. (2001). Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: A new mechanism of controlling tumor growth. Pancreas, 22(1), 1–7.PubMedCrossRefGoogle Scholar
  4. Boros, L. G., Puigjaner, J., Cascante, M., Lee, W. N., Brandes, J. L., Bassilian, S., et al. (1997). Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Research, 57(19), 4242–4248.PubMedGoogle Scholar
  5. Boros, L. G., Torday, J. S., Lim, S., Bassilian, S., Cascante, M., & Lee, W. N. (2000). Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells. Cancer Research, 60(5), 1183–1185.PubMedGoogle Scholar
  6. Deberardinis, R. J., Sayed, N., Ditsworth, D., & Thompson, C. B. (2008). Brick by brick: Metabolism and tumor cell growth. Current Opinion in Genetics & Development, 18(1), 54–61. doi: 10.1016/j.gde.2008.02.003.CrossRefGoogle Scholar
  7. Fantin, V. R., St-Pierre, J., & Leder, P. (2006). Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 9(6), 425–434. doi: 10.1016/j.ccr.2006.04.023.PubMedCrossRefGoogle Scholar
  8. Goldman, R. D., Kaplan, N. O., & Hall, T. C. (1964). Lactic dehydrogenase in human neoplastic tissues. Cancer Research, 24, 389–399.PubMedGoogle Scholar
  9. Granchi, C., Roy, S., Giacomelli, C., Macchia, M., Tuccinardi, T., Martinelli, A., et al. (2011). Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. Journal of Medicinal Chemistry, 54(6), 1599–1612. doi: 10.1021/jm101007q.PubMedCrossRefGoogle Scholar
  10. Harris, D. M., Li, L., Chen, M., Lagunero, T. L., Go, V. L. W., & Boros, L. G. (2012). Diverse mechanisms of growth inhibition by luteolin, resveratrol, and quercetin in MIA PaCa-2 cells: A comparative glucose tracer study with the fatty acid synthase inhibitor C75. Metabolomics, 8(2), 201–210.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hiura, A., Tsutsumi, M., & Satake, K. (1997). Inhibitory effect of green tea extract on the process of pancreatic carcinogenesis induced by N-nitrosobis-(2-oxypropyl)amine (BOP) and on tumor promotion after transplantation of N-nitrosobis-(2-hydroxypropyl)amine (BHP)-induced pancreatic cancer in Syrian hamsters. Pancreas, 15(3), 272–277.PubMedCrossRefGoogle Scholar
  12. Hsu, P. P., & Sabatini, D. M. (2008). Cancer cell metabolism: Warburg and beyond. Cell, 134(5), 703–707. doi: 10.1016/j.cell.2008.08.021.PubMedCrossRefGoogle Scholar
  13. Jeoung, N. H., Rahimi, Y., Wu, P., Lee, W. N., & Harris, R. A. (2012). Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice. Biochemical Journal, 443(3), 829–839. doi: 10.1042/BJ20112197.PubMedCrossRefGoogle Scholar
  14. Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548. doi: 10.1101/gad.1756509.CrossRefGoogle Scholar
  15. Le, A., Cooper, C. R., Gouw, A. M., Dinavahi, R., Maitra, A., Deck, L. M., et al. (2010). Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2037–2042. doi: 10.1073/pnas.0914433107.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lee, W. N. (1996). Stable isotopes and mass isotopomer study of fatty acid and cholesterol synthesis. A review of the MIDA approach. Advances in Experimental Medicine and Biology, 399, 95–114.PubMedCrossRefGoogle Scholar
  17. Lee, W. N., Boros, L. G., Puigjaner, J., Bassilian, S., Lim, S., & Cascante, M. (1998). Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. American Journal of Physiology, 274(5 Pt 1), E843–E851.PubMedGoogle Scholar
  18. Lee, W. N., Edmond, J., Bassilian, S., & Morrow, J. W. (1996). Mass isotopomer study of glutamine oxidation and synthesis in primary culture of astrocytes. Developmental Neuroscience, 18(5–6), 469–477.PubMedCrossRefGoogle Scholar
  19. Lee, W. N., Guo, P., Lim, S., Bassilian, S., Lee, S. T., Boren, J., et al. (2004). Metabolic sensitivity of pancreatic tumour cell apoptosis to glycogen phosphorylase inhibitor treatment. British Journal of Cancer, 91(12), 2094–2100. doi: 10.1038/sj.bjc.6602243.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Leimer, K. R., Rice, R. H., & Gehrke, C. W. (1977). Complete mass spectra of N-trifluoroacetyl-n-butyl esters of amino acids. Journal of Chromatography, 141(2), 121–144.PubMedCrossRefGoogle Scholar
  21. Li, Y., Zhang, T., Jiang, Y., Lee, H. F., Schwartz, S. J., & Sun, D. (2009). (−)-Epigallocatechin-3-gallate inhibits Hsp90 function by impairing Hsp90 association with cochaperones in pancreatic cancer cell line Mia Paca-2. Molecular Pharmaceutics, 6(4), 1152–1159. doi: 10.1021/mp900037p.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Liu, S., Wang, X. J., Liu, Y., & Cui, Y. F. (2013). PI3 K/AKT/mTOR signaling is involved in (−)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. American Journal of Chinese Medicine, 41(3), 629–642. doi: 10.1142/S0192415X13500444.PubMedCrossRefGoogle Scholar
  23. Ma, D., Wang, J., Zhao, Y., Lee, W. N., Xiao, J., Go, V. L., et al. (2012). Inhibition of glycogen phosphorylation induces changes in cellular proteome and signaling pathways in MIA pancreatic cancer cells. Pancreas, 41(3), 397–408. doi: 10.1097/MPA.0b013e318236f022.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Majima, T., Tsutsumi, M., Nishino, H., Tsunoda, T., & Konishi, Y. (1998). Inhibitory effects of beta-carotene, palm carotene, and green tea polyphenols on pancreatic carcinogenesis initiated by N-nitorsobis(2-oxopropyl)amine in Syrian golden hamsters. Pancreas, 16(1), 13–18.PubMedCrossRefGoogle Scholar
  25. Papaconstantinou, J., & Colowick, S. P. (1961). The role of glycolysis in the growth of tumor cells. II. The effect of oxamic acid on the growth of HeLa cells in tissue culture. Journal of Biological Chemistry, 236, 285–288.PubMedGoogle Scholar
  26. Qanungo, S., Das, M., Haldar, S., & Basu, A. (2005). Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis, 26(5), 958–967. doi: 10.1093/carcin/bgi040.PubMedCrossRefGoogle Scholar
  27. Ramos-Montoya, A., Lee, W. N., Bassilian, S., Lim, S., Trebukhina, R. V., Kazhyna, M. V., et al. (2006). Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer, 119(12), 2733–2741. doi: 10.1002/ijc.22227.CrossRefGoogle Scholar
  28. Rong, Y., Wu, W., Ni, X., Kuang, T., Jin, D., Wang, D., et al. (2013). Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biology, 34(3), 1523–1530. doi: 10.1007/s13277-013-0679-1.PubMedCrossRefGoogle Scholar
  29. Sanchez-Tena, S., Alcarraz-Vizan, G., Marin, S., Torres, J. L., & Cascante, M. (2013). Epicatechin gallate impairs colon cancer cell metabolic productivity. Journal of Agriculture and Food Chemistry, 61(18), 4310–4317. doi: 10.1021/jf3052785.CrossRefGoogle Scholar
  30. Semenza, G. L., Jiang, B. H., Leung, S. W., Passantino, R., Concordet, J. P., Maire, P., et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. Journal of Biological Chemistry, 271(51), 32529–32537.PubMedCrossRefGoogle Scholar
  31. Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.PubMedCrossRefGoogle Scholar
  32. Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3(10), 768–780.PubMedCrossRefGoogle Scholar
  33. Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., et al. (2002). Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate. Pancreas, 25(1), 45–48.PubMedCrossRefGoogle Scholar
  34. Thornburg, J. M., Nelson, K. K., Clem, B. F., Lane, A. N., Arumugam, S., Simmons, A., et al. (2008). Targeting aspartate aminotransferase in breast cancer. Breast Cancer Research, 10(5), R84. doi: 10.1186/bcr2154.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Wahjudi, P. N., Patterson, M. E., Lim, S., Yee, J. K., Mao, C. S., & Lee, W. N. (2010). Measurement of glucose and fructose in clinical samples using gas chromatography/mass spectrometry. Clinical Biochemistry, 43(1–2), 198–207. doi: 10.1016/j.clinbiochem.2009.08.028.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Wang, J., Zhang, X., Ma, D., Lee, W. N., Xiao, J., Zhao, Y., et al. (2013). Inhibition of transketolase by oxythiamine altered dynamics of protein signals in pancreatic cancer cells. Experimental Hematology & Oncology, 2(1), 18. doi: 10.1186/2162-3619-2-18.CrossRefGoogle Scholar
  37. Yang, C. S., Wang, X., Lu, G., & Picinich, S. C. (2009). Cancer prevention by tea: Animal studies, molecular mechanisms and human relevance. Nature Reviews Cancer, 9(6), 429–439. doi: 10.1038/nrc2641.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Yasui, K., Tanabe, H., Miyoshi, N., Suzuki, T., Goto, S., Taguchi, K., et al. (2011). Effects of (−)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. Biomedical Research, 32(5), 313–320.PubMedCrossRefGoogle Scholar
  39. Zhang, H., Cao, R., Lee, W. N., Deng, C., Zhao, Y., Lappe, J., et al. (2010). Inhibition of protein phosphorylation in MIA pancreatic cancer cells: Confluence of metabolic and signaling pathways. Journal of Proteome Research, 9(2), 980–989. doi: 10.1021/pr9008805.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Zhang, L., Pang, E., Loo, R. R., Rao, J., Go, V. L., Loo, J. A., et al. (2011). Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics, 11(24), 4638–4647. doi: 10.1002/pmic.201100242.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qing-Yi Lu
    • 1
  • Lifeng Zhang
    • 1
  • Jennifer K. Yee
    • 2
  • Vay-Liang W. Go
    • 1
  • Wai-Nang Lee
    • 2
    Email author
  1. 1.Department of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of PediatricsLos Angeles Biomedical Research InstituteTorranceUSA

Personalised recommendations