Advertisement

Metabolomics

, Volume 11, Issue 1, pp 81–97 | Cite as

Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars

  • Dagan Sade
  • Oz Shriki
  • Alvaro Cuadros-Inostroza
  • Takayuki Tohge
  • Yaniv Semel
  • Yaron Haviv
  • Lothar Willmitzer
  • Alisdair R. Fernie
  • Henry Czosnek
  • Yariv BrotmanEmail author
Original Article

Abstract

In order to understand resistance to Tomato yellow leaf curl virus (TYLCV) we have performed a combined analysis of the metabolome and transcriptome of resistant (R) and susceptible (S) tomato plants both prior to and following TYLCV infection. Metabolites detected by gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry analysis, in leaves of R and S plants, at 1, 3, 7 and 14 days post infection and control plants, were used for the reconstruction of four independent metabolic networks. Measuring the network parameters revealed distinctive systemic metabolic responses to TYLCV infection between the R and S plants. Notably, the GC–MS metabolic network indicated that, following infection, the R plant exhibited tight coordination of the metabolome than the S plant. Clear differences in the level of specialized metabolites between the S and R plants were revealed; among them, substantial alteration in the abundance of amino acids and polyamines, phenolic and indolic metabolites, all leading to the synthesis of defense compounds. Integrating metabolome and transcriptome data highlighted differently regulated pathways in the R and S plants in response to TYLCV, including the phenylpropanoid, tryptophan/nicotinate and urea/polyamine pathways. Salicylic acid biosynthesis was additionally distinctively activated in R plants upon infection. Comparing the expression of genes of the urea and phenylpropanoid pathways in S, R and Solanum habrochaites, the resistance genitor wild species tomato, indicated a time-shift in the expression patterns, before and following infection, which on one hand reflected the genetic similarity between these plants, and on the other hand demonstrated that the resistant phenotype is intermediate between that of S and S. habrochaites.

Keywords

TYLCV Tomato Resistance Metabolomics Metabolic networks 

Supplementary material

11306_2014_670_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 16 kb)
11306_2014_670_MOESM2_ESM.pdf (125 kb)
Supplementary material 2 (PDF 125 kb)
11306_2014_670_MOESM3_ESM.pdf (86 kb)
Supplementary material 3 (PDF 86 kb)
11306_2014_670_MOESM4_ESM.pdf (432 kb)
Supplementary material 4 (PDF 432 kb)
11306_2014_670_MOESM5_ESM.pdf (144 kb)
Supplementary material 5 (PDF 144 kb)
11306_2014_670_MOESM6_ESM.pdf (220 kb)
Supplementary material 6 (PDF 220 kb)
11306_2014_670_MOESM7_ESM.xlsx (26 kb)
Supplementary material 7 (XLSX 25 kb)
11306_2014_670_MOESM8_ESM.xlsx (21 kb)
Supplementary material 8 (XLSX 20 kb)
11306_2014_670_MOESM9_ESM.xlsx (57 kb)
Supplementary material 9 (XLSX 56 kb)
11306_2014_670_MOESM10_ESM.xlsx (21 kb)
Supplementary material 10 (XLSX 20 kb)
11306_2014_670_MOESM11_ESM.docx (23 kb)
Supplementary material 11 (DOCX 23 kb)

References

  1. Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 46, 351–368.PubMedCrossRefGoogle Scholar
  2. Alon, M., Malka, O., Eakteiman, G., Elbaz, M., Moyal Ben Zvi, M., Vainstein, A., et al. (2013). Activation of the Phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PLoS One, 8(10), e76619.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arvidsson, S., Kwasniewski, M., Riano-Pachon, D. M., & Mueller-Roeber, B. (2008). QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics, 9, 465.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Ahmed Bahieldin, A.B.G., Jamal, S.M. Sabir, A., Ahmed Ramadan, A.C., Ahmed M. Alzohairy, D., Rania A. Younis, B., Ahmed M. Shokry, A.C., Nour O. Gadalla, A.E., Sherif Edris, A.B.F., Sabah M. Hassan, A.B., Magdy A. Al-Kordy, A.E., Khalid B. H. Kamal, A., Samar Rabah, A., Osama A. Abuzinadah, A., & Fotouh M. El-Domyati, A.B. (2014). Control of glycerol biosynthesis under high salt stress in Arabidopsis. Functional Plant Biology, 41, 87–95.Google Scholar
  5. Bazzini, A. A., Manacorda, C. A., Tohge, T., Conti, G., Rodriguez, M. C., Nunes-Nesi, A., et al. (2011). Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS One, 6, e28466.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101–106.PubMedCrossRefGoogle Scholar
  7. Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.PubMedCrossRefGoogle Scholar
  8. Bhuiyan, N. H., Selvaraj, G., Wei, Y., & King, J. (2009). Role of lignification in plant defense. Plant Signal Behaviour, 4, 158–159.CrossRefGoogle Scholar
  9. Bouche, N., & Fromm, H. (2004). GABA in plants: just a metabolite? Trends in Plant Science, 9, 110–115.PubMedCrossRefGoogle Scholar
  10. Bovy, A., Schijlen, E., & Hall, R. D. (2007). Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics, 3, 399–412.CrossRefGoogle Scholar
  11. Burger, J., & Edwards, G. E. (1996). Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant and Cell Physiology, 37, 395–399.CrossRefGoogle Scholar
  12. Burritt, D. J. (2008). The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant, Cell and Environment, 31, 1416–1431.PubMedCrossRefGoogle Scholar
  13. Cafieri, F., Fattorusso, E., & Taglialatela-Scafati, O. (1998). Novel bromopyrrole alkaloids from the sponge Agelas dispar. Journal of Natural Products, 61, 122–125.PubMedCrossRefGoogle Scholar
  14. Caldana, C., Degenkolbe, T., Cuadros-Inostroza, A., Klie, S., Sulpice, R., Leisse, A., et al. (2011). High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant Journal, 67, 869–884.PubMedCrossRefGoogle Scholar
  15. Chanda, B., Xia, Y., Mandal, M. K., Yu, K. S., Sekine, K. T., Gao, Q. M., et al. (2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 43, 421.PubMedCrossRefGoogle Scholar
  16. Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., et al. (2013). Comparative transcriptome profiling of a resistant versus susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One, 8(11), e80816.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chen, H., McCaig, B. C., Melotto, M., He, S. Y., & Howe, G. A. (2004). Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. Journal of Biological Chemistry, 279, 45998–46007.PubMedCrossRefGoogle Scholar
  18. Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behaviour, 4, 493–496.CrossRefGoogle Scholar
  19. Cheng, A. X., Gou, J. Y., Yu, X. H., Yang, H., Fang, X., Chen, X. Y., et al. (2013). Characterization and ectopic expression of a populus hydroxyacid hydroxycinnamoyltransferase. Molecular Plant, 6, 1889–1903.PubMedCrossRefGoogle Scholar
  20. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.CrossRefGoogle Scholar
  21. Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95–101.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Csárdi, G., Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695. http://igraph.org.Google Scholar
  23. Cuadros-Inostroza, A., Caldana, C., Redestig, H., Kusano, M., Lisec, J., Pena-Cortes, H., et al. (2009). TargetSearch—A Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics, 10, 428.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Czosnek, H. (2007). Tomato Yellow Leaf Curl Virus disease management, molecular biology, breeding for resistance. Dordrecht: Springer.CrossRefGoogle Scholar
  25. Czosnek, H., Eybishtz, A., Sade, D., Gorovits, R., Sobol, I., Bejarano, E., et al. (2013). Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus Complex and in the establishment of resistance to the virus using tobacco rattle virus-based post transcriptional gene silencing. Viruses-Basel, 5, 998–1022.CrossRefGoogle Scholar
  26. Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiology, 137, 1302–1318.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Dong, J., & Horvath, S. (2007). Understanding network concepts in modules. BMC Systems Biology, 1, 24.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Elbert, A., Nauen, R., & Leicht, W. (1998). Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In I. Ishaaya, & D. Degheele (Eds.), Insecticides with novel modes of action. Applied Agriculture (pp. 50–73). Berlin: Springer.Google Scholar
  29. Eybishtz, A., Peretz, Y., Sade, D., Akad, F., & Czosnek, H. (2009). Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Molecular Biology, 71, 157–171.PubMedCrossRefGoogle Scholar
  30. Eybishtz, A., Peretz, Y., Sade, D., Gorovits, R., & Czosnek, H. (2010). Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta, 231, 537–548.PubMedCrossRefGoogle Scholar
  31. Fait, A., Fromm, H., Walter, D., Galili, G., & Fernie, A. R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14–19.PubMedCrossRefGoogle Scholar
  32. Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146, 387–402.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Fritzemeier, K. H., Cretin, C., Kombrink, E., Rohwer, F., Taylor, J., Scheel, D., et al. (1987). Transient induction of phenylalanine ammonia-lyase and 4-coumarate-coa ligase messenger-RNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiology, 85, 34–41.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  35. Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S., & Somers, D. J. (2012). Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One, 7, e40695.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Hagemeier, J., Schneider, B., Oldham, N. J., & Hahlbrock, K. (2001). Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences USA, 98, 753–758.CrossRefGoogle Scholar
  37. Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., et al. (2013). Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biology, 13, 184.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Kessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: The emerging molecular analysis. Annual Review of Plant Biology, 53, 299–328.PubMedCrossRefGoogle Scholar
  39. Koornneef, A., & Pieterse, C. M. (2008). Cross talk in defense signaling. Plant Physiology, 146(3), 839–844.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.PubMedCrossRefGoogle Scholar
  41. Kren, V., & Martinkova, L. (2001). Glycosides in medicine: The role of glycosidic residue in biological activity. Current Medicinal Chemistry, 8, 1303–1328.PubMedCrossRefGoogle Scholar
  42. Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., et al. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant Journal, 67, 354–369.PubMedCrossRefGoogle Scholar
  43. Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, R., & Halford, N. G. (2007). Asparagine in plants. Annals of Applied Biology, 150, 1–26.CrossRefGoogle Scholar
  44. Li, J. Y., Oulee, T. M., Raba, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to Uv-B irradiation. Plant Cell, 5, 171–179.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.PubMedCrossRefGoogle Scholar
  46. Lois, R. (1994). Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L.1. Mechanisms of UV-resistance in Arabidopsis. Planta, 194, 498–503.CrossRefGoogle Scholar
  47. Luan, J. B., Yao, D. M., Zhang, T., Walling, L. L., Yang, M., Wang, Y. J., et al. (2013). Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecology Letters, 16(3), 390–398.PubMedCrossRefGoogle Scholar
  48. Maher, E. A., Bate, N. J., Ni, W. T., Elkind, Y., Dixon, R. A., & Lamb, C. J. (1994). Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proceedings of the National Academy of Sciences USA, 91, 7802–7806.CrossRefGoogle Scholar
  49. Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I., & Wasternack, C. (2008). Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytologist, 177, 114–127.PubMedGoogle Scholar
  50. Modolo, L. V., Cunha, F. Q., Braga, M. R., & Salgado, I. (2002). Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiology, 130, 1288–1297.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333, 596–601.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Muroi, A., Ishihara, A., Tanaka, C., Ishizuka, A., Takabayashi, J., Miyoshi, H., et al. (2009). Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta, 230, 517–527.PubMedCrossRefGoogle Scholar
  53. Murphy, A. M., Chivasa, S., Singh, D. P., & Carr, J. P. (1999). Salicylic acid-induced resistance to viruses and other pathogens: A parting of the ways? Trends in Plant Science, 4, 155–160.PubMedCrossRefGoogle Scholar
  54. Nicaise, V., Roux, M., & Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise the alarm. Plant Physiology, 150, 1638–1647.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22, 746–754.PubMedCrossRefGoogle Scholar
  56. Niyogi, K. K., Last, R. L., Fink, G. R., & Keith, B. (1993). Suppressors of Trp1 fluorescence identify a new Arabidopsis gene, Trp4, encoding the anthranilate synthase beta-subunit. Plant Cell, 5, 1011–1027.PubMedCentralPubMedGoogle Scholar
  57. Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Obayashi, T., & Kinoshita, K. (2009). Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Research, 16, 249–260.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Olson, M. M., & Roseland, C. R. (1991). Induction of the coumarins scopoletin and ayapin in sunflower by insect feeding stress and effects of coumarins on the feeding of sunflower beetle (Coleoptera, Chrysomelidae). Environmental Entomology, 20, 1166–1172.Google Scholar
  60. Park, D. H., Mirabella, R., Bronstein, P. A., Preston, G. M., Haring, M. A., Lim, C. K., et al. (2010). Mutations in gamma-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant Journal, 64, 318–330.PubMedCrossRefGoogle Scholar
  61. Rayapuram, C., & Baldwin, I. T. (2008). Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC Plant Biology, 8, 109.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Rico, A., & Preston, G. M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269–282.PubMedCrossRefGoogle Scholar
  63. Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., et al. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 68, 999–1013.PubMedCrossRefGoogle Scholar
  64. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell, 8, 1809–1819.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Sade, D., Brotman, Y., Eybishtz, A., Cuadros-Inostroza, A., Fernie, A. R., Willmitzer, L., et al. (2013). Involvement of the hexose transporter gene LeHT1 and of sugars in resistance of tomato to tomato yellow leaf curl virus. Molecular Plant, 6, 1707–1710.PubMedCrossRefGoogle Scholar
  66. Sanchez, D. H., Pieckenstain, F. L., Escaray, F., Erban, A., Kraemer, U., Udvardi, M. K., et al. (2011). Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant, Cell and Environment, 34, 605–617.PubMedCrossRefGoogle Scholar
  67. Schmelzer, E., Krugerlebus, S., & Hahlbrock, K. (1989). Temporal and spatial patterns of gene-expression around sites of attempted fungal infection in parsley leaves. Plant Cell, 1, 993–1001.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.PubMedCentralPubMedCrossRefGoogle Scholar
  69. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., et al. (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal, 50, 660–677.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Sui, N., Li, M., Liu, X. Y., Wang, N., Fang, W., & Meng, Q. W. (2007). Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica, 45, 447–454.CrossRefGoogle Scholar
  71. Tan, J., Bednarek, P., Liu, J., Schneider, B., Svatos, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65, 691–699.PubMedCrossRefGoogle Scholar
  72. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., et al. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914–939.PubMedCrossRefGoogle Scholar
  73. Thomma, B. P., Penninckx, I. A., Broekaert, W. F., & Cammue, B. P. (2001). The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 13(1), 63–68.PubMedCrossRefGoogle Scholar
  74. Tiburcio, A. F., Campos, J. L., Figueras, X., & Besford, R. T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 12, 331–340.CrossRefGoogle Scholar
  75. Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., et al. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal, 42, 218–235.PubMedCrossRefGoogle Scholar
  76. Toubiana, D., Fernie, A. R., Nikoloski, Z., & Fait, A. (2013). Network analysis: tackling complex data to study plant metabolism. Trends in Biotechnology, 31, 29–36.PubMedCrossRefGoogle Scholar
  77. Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. [Review]. Plant Biology (Stuttgart, Germany), 7, 581–591.CrossRefGoogle Scholar
  78. Uppalapati, S. R., Ishiga, Y., Wangdi, T., Urbanczyk-Wochniak, E., Ishiga, T., Mysore, K. S., et al. (2008). Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Molecular Plant-Microbe Interactions, 21, 383–395.PubMedCrossRefGoogle Scholar
  79. Van Gestelen, P., Ledeganck, P., Wynant, I., Caubergs, R. J., & Asard, H. (1998). The cantharidin-induced oxidative burst in tobacco BY-2 cell suspension cultures. Protoplasma, 205, 83–92.CrossRefGoogle Scholar
  80. Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G., Scott, J. W., et al. (2013). The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genetics, 9, e1003399.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Vidavsky, F., & Czosnek, H. (1998). Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology, 88(9), 910–914.PubMedCrossRefGoogle Scholar
  82. Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3, 2–20.PubMedCrossRefGoogle Scholar
  83. Von Roepenack-Lahaye, E., Newman, M. A., Schornack, S., Hammond-Kosack, K. E., Lahaye, T., Jones, J. D., et al. (2003). p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. Journal of Biological Chemistry, 278(44), 43373–43383.CrossRefGoogle Scholar
  84. Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., et al. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant Journal, 63, 443–457.PubMedCrossRefGoogle Scholar
  85. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.PubMedCrossRefGoogle Scholar
  86. Wilkens, R. T., Spoerke, J. M., & Stamp, N. E. (1996). Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology, 77, 247–258.CrossRefGoogle Scholar
  87. Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Zacares, L., Lopez-Gresa, M. P., Fayos, J., Primo, J., Belles, J. M., & Conejero, V. (2007). Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 20, 1439–1448.PubMedCrossRefGoogle Scholar
  89. Zarate, S. I., Kempema, L. A., & Walling, L. L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 143(2), 866–875.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dagan Sade
    • 1
  • Oz Shriki
    • 1
  • Alvaro Cuadros-Inostroza
    • 2
  • Takayuki Tohge
    • 2
  • Yaniv Semel
    • 3
  • Yaron Haviv
    • 4
  • Lothar Willmitzer
    • 2
  • Alisdair R. Fernie
    • 2
  • Henry Czosnek
    • 1
  • Yariv Brotman
    • 2
    Email author
  1. 1.Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
  2. 2.Genes and Small Molecules, AG WillmitzerMax-Planck Institute of Molecular Plant PhysiologyPotsdam-GolmGermany
  3. 3.Phenom-NetworksNes ZionaIsrael
  4. 4.Department of Oral MedicineHebrew University – Hadassah School of Dental MedicineJerusalemIsrael

Personalised recommendations