Skip to main content

Advertisement

Log in

Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In order to understand resistance to Tomato yellow leaf curl virus (TYLCV) we have performed a combined analysis of the metabolome and transcriptome of resistant (R) and susceptible (S) tomato plants both prior to and following TYLCV infection. Metabolites detected by gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry analysis, in leaves of R and S plants, at 1, 3, 7 and 14 days post infection and control plants, were used for the reconstruction of four independent metabolic networks. Measuring the network parameters revealed distinctive systemic metabolic responses to TYLCV infection between the R and S plants. Notably, the GC–MS metabolic network indicated that, following infection, the R plant exhibited tight coordination of the metabolome than the S plant. Clear differences in the level of specialized metabolites between the S and R plants were revealed; among them, substantial alteration in the abundance of amino acids and polyamines, phenolic and indolic metabolites, all leading to the synthesis of defense compounds. Integrating metabolome and transcriptome data highlighted differently regulated pathways in the R and S plants in response to TYLCV, including the phenylpropanoid, tryptophan/nicotinate and urea/polyamine pathways. Salicylic acid biosynthesis was additionally distinctively activated in R plants upon infection. Comparing the expression of genes of the urea and phenylpropanoid pathways in S, R and Solanum habrochaites, the resistance genitor wild species tomato, indicated a time-shift in the expression patterns, before and following infection, which on one hand reflected the genetic similarity between these plants, and on the other hand demonstrated that the resistant phenotype is intermediate between that of S and S. habrochaites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., Heald, J. K., Goodacre, R., & Mur, L. A. J. (2006). Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant Journal, 46, 351–368.

    Article  CAS  PubMed  Google Scholar 

  • Alon, M., Malka, O., Eakteiman, G., Elbaz, M., Moyal Ben Zvi, M., Vainstein, A., et al. (2013). Activation of the Phenylpropanoid pathway in Nicotiana tabacum improves the performance of the whitefly Bemisia tabaci via reduced jasmonate signaling. PLoS One, 8(10), e76619.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arvidsson, S., Kwasniewski, M., Riano-Pachon, D. M., & Mueller-Roeber, B. (2008). QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics, 9, 465.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ahmed Bahieldin, A.B.G., Jamal, S.M. Sabir, A., Ahmed Ramadan, A.C., Ahmed M. Alzohairy, D., Rania A. Younis, B., Ahmed M. Shokry, A.C., Nour O. Gadalla, A.E., Sherif Edris, A.B.F., Sabah M. Hassan, A.B., Magdy A. Al-Kordy, A.E., Khalid B. H. Kamal, A., Samar Rabah, A., Osama A. Abuzinadah, A., & Fotouh M. El-Domyati, A.B. (2014). Control of glycerol biosynthesis under high salt stress in Arabidopsis. Functional Plant Biology, 41, 87–95.

  • Bazzini, A. A., Manacorda, C. A., Tohge, T., Conti, G., Rodriguez, M. C., Nunes-Nesi, A., et al. (2011). Metabolic and miRNA profiling of TMV infected plants reveals biphasic temporal changes. PLoS One, 6, e28466.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan, N. H., Selvaraj, G., Wei, Y., & King, J. (2009). Role of lignification in plant defense. Plant Signal Behaviour, 4, 158–159.

    Article  CAS  Google Scholar 

  • Bouche, N., & Fromm, H. (2004). GABA in plants: just a metabolite? Trends in Plant Science, 9, 110–115.

    Article  CAS  PubMed  Google Scholar 

  • Bovy, A., Schijlen, E., & Hall, R. D. (2007). Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics, 3, 399–412.

    Article  CAS  Google Scholar 

  • Burger, J., & Edwards, G. E. (1996). Photosynthetic efficiency, and photodamage by UV and visible radiation, in red versus green leaf coleus varieties. Plant and Cell Physiology, 37, 395–399.

    Article  CAS  Google Scholar 

  • Burritt, D. J. (2008). The polycyclic aromatic hydrocarbon phenanthrene causes oxidative stress and alters polyamine metabolism in the aquatic liverwort Riccia fluitans L. Plant, Cell and Environment, 31, 1416–1431.

    Article  CAS  PubMed  Google Scholar 

  • Cafieri, F., Fattorusso, E., & Taglialatela-Scafati, O. (1998). Novel bromopyrrole alkaloids from the sponge Agelas dispar. Journal of Natural Products, 61, 122–125.

    Article  CAS  PubMed  Google Scholar 

  • Caldana, C., Degenkolbe, T., Cuadros-Inostroza, A., Klie, S., Sulpice, R., Leisse, A., et al. (2011). High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant Journal, 67, 869–884.

    Article  CAS  PubMed  Google Scholar 

  • Chanda, B., Xia, Y., Mandal, M. K., Yu, K. S., Sekine, K. T., Gao, Q. M., et al. (2011). Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nature Genetics, 43, 421.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T., Lv, Y., Zhao, T., Li, N., Yang, Y., Yu, W., et al. (2013). Comparative transcriptome profiling of a resistant versus susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One, 8(11), e80816.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, H., McCaig, B. C., Melotto, M., He, S. Y., & Howe, G. A. (2004). Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. Journal of Biological Chemistry, 279, 45998–46007.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behaviour, 4, 493–496.

    Article  CAS  Google Scholar 

  • Cheng, A. X., Gou, J. Y., Yu, X. H., Yang, H., Fang, X., Chen, X. Y., et al. (2013). Characterization and ectopic expression of a populus hydroxyacid hydroxycinnamoyltransferase. Molecular Plant, 6, 1889–1903.

    Article  CAS  PubMed  Google Scholar 

  • Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.

    Article  Google Scholar 

  • Clay, N. K., Adio, A. M., Denoux, C., Jander, G., & Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science, 323, 95–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csárdi, G., Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695. http://igraph.org.

    Google Scholar 

  • Cuadros-Inostroza, A., Caldana, C., Redestig, H., Kusano, M., Lisec, J., Pena-Cortes, H., et al. (2009). TargetSearch—A Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics, 10, 428.

    Article  PubMed Central  PubMed  Google Scholar 

  • Czosnek, H. (2007). Tomato Yellow Leaf Curl Virus disease management, molecular biology, breeding for resistance. Dordrecht: Springer.

    Book  Google Scholar 

  • Czosnek, H., Eybishtz, A., Sade, D., Gorovits, R., Sobol, I., Bejarano, E., et al. (2013). Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus Complex and in the establishment of resistance to the virus using tobacco rattle virus-based post transcriptional gene silencing. Viruses-Basel, 5, 998–1022.

    Article  CAS  Google Scholar 

  • Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiology, 137, 1302–1318.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong, J., & Horvath, S. (2007). Understanding network concepts in modules. BMC Systems Biology, 1, 24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Elbert, A., Nauen, R., & Leicht, W. (1998). Imidacloprid, a novel chloronicotinyl insecticide: biological activity and agricultural importance. In I. Ishaaya, & D. Degheele (Eds.), Insecticides with novel modes of action. Applied Agriculture (pp. 50–73). Berlin: Springer.

  • Eybishtz, A., Peretz, Y., Sade, D., Akad, F., & Czosnek, H. (2009). Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Molecular Biology, 71, 157–171.

    Article  CAS  PubMed  Google Scholar 

  • Eybishtz, A., Peretz, Y., Sade, D., Gorovits, R., & Czosnek, H. (2010). Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta, 231, 537–548.

    Article  CAS  PubMed  Google Scholar 

  • Fait, A., Fromm, H., Walter, D., Galili, G., & Fernie, A. R. (2008). Highway or byway: the metabolic role of the GABA shunt in plants. Trends in Plant Science, 13, 14–19.

    Article  CAS  PubMed  Google Scholar 

  • Farag, M. A., Huhman, D. V., Dixon, R. A., & Sumner, L. W. (2008). Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiology, 146, 387–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzemeier, K. H., Cretin, C., Kombrink, E., Rohwer, F., Taylor, J., Scheel, D., et al. (1987). Transient induction of phenylalanine ammonia-lyase and 4-coumarate-coa ligase messenger-RNAs in potato leaves infected with virulent or avirulent races of Phytophthora infestans. Plant Physiology, 85, 34–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Gunnaiah, R., Kushalappa, A. C., Duggavathi, R., Fox, S., & Somers, D. J. (2012). Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One, 7, e40695.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hagemeier, J., Schneider, B., Oldham, N. J., & Hahlbrock, K. (2001). Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proceedings of the National Academy of Sciences USA, 98, 753–758.

    Article  CAS  Google Scholar 

  • Hochberg, U., Degu, A., Toubiana, D., Gendler, T., Nikoloski, Z., Rachmilevitch, S., et al. (2013). Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biology, 13, 184.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kessler, A., & Baldwin, I. T. (2002). Plant responses to insect herbivory: The emerging molecular analysis. Annual Review of Plant Biology, 53, 299–328.

    Article  CAS  PubMed  Google Scholar 

  • Koornneef, A., & Pieterse, C. M. (2008). Cross talk in defense signaling. Plant Physiology, 146(3), 839–844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  • Kren, V., & Martinkova, L. (2001). Glycosides in medicine: The role of glycosidic residue in biological activity. Current Medicinal Chemistry, 8, 1303–1328.

    Article  CAS  PubMed  Google Scholar 

  • Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., et al. (2011). Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant Journal, 67, 354–369.

    Article  CAS  PubMed  Google Scholar 

  • Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, R., & Halford, N. G. (2007). Asparagine in plants. Annals of Applied Biology, 150, 1–26.

    Article  CAS  Google Scholar 

  • Li, J. Y., Oulee, T. M., Raba, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis flavonoid mutants are hypersensitive to Uv-B irradiation. Plant Cell, 5, 171–179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Lois, R. (1994). Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L.1. Mechanisms of UV-resistance in Arabidopsis. Planta, 194, 498–503.

    Article  CAS  Google Scholar 

  • Luan, J. B., Yao, D. M., Zhang, T., Walling, L. L., Yang, M., Wang, Y. J., et al. (2013). Suppression of terpenoid synthesis in plants by a virus promotes its mutualism with vectors. Ecology Letters, 16(3), 390–398.

    Article  PubMed  Google Scholar 

  • Maher, E. A., Bate, N. J., Ni, W. T., Elkind, Y., Dixon, R. A., & Lamb, C. J. (1994). Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proceedings of the National Academy of Sciences USA, 91, 7802–7806.

    Article  CAS  Google Scholar 

  • Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I., & Wasternack, C. (2008). Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytologist, 177, 114–127.

    CAS  PubMed  Google Scholar 

  • Modolo, L. V., Cunha, F. Q., Braga, M. R., & Salgado, I. (2002). Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiology, 130, 1288–1297.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mukhtar, M. S., Carvunis, A. R., Dreze, M., Epple, P., Steinbrenner, J., Moore, J., et al. (2011). Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 333, 596–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muroi, A., Ishihara, A., Tanaka, C., Ishizuka, A., Takabayashi, J., Miyoshi, H., et al. (2009). Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta, 230, 517–527.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, A. M., Chivasa, S., Singh, D. P., & Carr, J. P. (1999). Salicylic acid-induced resistance to viruses and other pathogens: A parting of the ways? Trends in Plant Science, 4, 155–160.

    Article  PubMed  Google Scholar 

  • Nicaise, V., Roux, M., & Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: Pattern recognition receptors watch over and raise the alarm. Plant Physiology, 150, 1638–1647.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niggeweg, R., Michael, A. J., & Martin, C. (2004). Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnology, 22, 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi, K. K., Last, R. L., Fink, G. R., & Keith, B. (1993). Suppressors of Trp1 fluorescence identify a new Arabidopsis gene, Trp4, encoding the anthranilate synthase beta-subunit. Plant Cell, 5, 1011–1027.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obayashi, T., & Kinoshita, K. (2009). Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Research, 16, 249–260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olson, M. M., & Roseland, C. R. (1991). Induction of the coumarins scopoletin and ayapin in sunflower by insect feeding stress and effects of coumarins on the feeding of sunflower beetle (Coleoptera, Chrysomelidae). Environmental Entomology, 20, 1166–1172.

    CAS  Google Scholar 

  • Park, D. H., Mirabella, R., Bronstein, P. A., Preston, G. M., Haring, M. A., Lim, C. K., et al. (2010). Mutations in gamma-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence. Plant Journal, 64, 318–330.

    Article  CAS  PubMed  Google Scholar 

  • Rayapuram, C., & Baldwin, I. T. (2008). Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata. BMC Plant Biology, 8, 109.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rico, A., & Preston, G. M. (2008). Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Molecular Plant-Microbe Interactions, 21, 269–282.

    Article  CAS  PubMed  Google Scholar 

  • Rohrmann, J., Tohge, T., Alba, R., Osorio, S., Caldana, C., McQuinn, R., et al. (2011). Combined transcription factor profiling, microarray analysis and metabolite profiling reveals the transcriptional control of metabolic shifts occurring during tomato fruit development. Plant Journal, 68, 999–1013.

    Article  CAS  PubMed  Google Scholar 

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell, 8, 1809–1819.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sade, D., Brotman, Y., Eybishtz, A., Cuadros-Inostroza, A., Fernie, A. R., Willmitzer, L., et al. (2013). Involvement of the hexose transporter gene LeHT1 and of sugars in resistance of tomato to tomato yellow leaf curl virus. Molecular Plant, 6, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, D. H., Pieckenstain, F. L., Escaray, F., Erban, A., Kraemer, U., Udvardi, M. K., et al. (2011). Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant, Cell and Environment, 34, 605–617.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer, E., Krugerlebus, S., & Hahlbrock, K. (1989). Temporal and spatial patterns of gene-expression around sites of attempted fungal infection in parsley leaves. Plant Cell, 1, 993–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., et al. (2007). Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant Journal, 50, 660–677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui, N., Li, M., Liu, X. Y., Wang, N., Fang, W., & Meng, Q. W. (2007). Response of xanthophyll cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene. Photosynthetica, 45, 447–454.

    Article  CAS  Google Scholar 

  • Tan, J., Bednarek, P., Liu, J., Schneider, B., Svatos, A., & Hahlbrock, K. (2004). Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 65, 691–699.

    Article  CAS  PubMed  Google Scholar 

  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., et al. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914–939.

    Article  CAS  PubMed  Google Scholar 

  • Thomma, B. P., Penninckx, I. A., Broekaert, W. F., & Cammue, B. P. (2001). The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 13(1), 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio, A. F., Campos, J. L., Figueras, X., & Besford, R. T. (1993). Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation, 12, 331–340.

    Article  CAS  Google Scholar 

  • Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., et al. (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant Journal, 42, 218–235.

    Article  CAS  PubMed  Google Scholar 

  • Toubiana, D., Fernie, A. R., Nikoloski, Z., & Fait, A. (2013). Network analysis: tackling complex data to study plant metabolism. Trends in Biotechnology, 31, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Treutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. [Review]. Plant Biology (Stuttgart, Germany), 7, 581–591.

    Article  CAS  Google Scholar 

  • Uppalapati, S. R., Ishiga, Y., Wangdi, T., Urbanczyk-Wochniak, E., Ishiga, T., Mysore, K. S., et al. (2008). Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine. Molecular Plant-Microbe Interactions, 21, 383–395.

    Article  CAS  PubMed  Google Scholar 

  • Van Gestelen, P., Ledeganck, P., Wynant, I., Caubergs, R. J., & Asard, H. (1998). The cantharidin-induced oxidative burst in tobacco BY-2 cell suspension cultures. Protoplasma, 205, 83–92.

    Article  Google Scholar 

  • Verlaan, M. G., Hutton, S. F., Ibrahem, R. M., Kormelink, R., Visser, R. G., Scott, J. W., et al. (2013). The Tomato Yellow Leaf Curl Virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genetics, 9, e1003399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vidavsky, F., & Czosnek, H. (1998). Tomato breeding lines resistant and tolerant to tomato yellow leaf curl virus issued from Lycopersicon hirsutum. Phytopathology, 88(9), 910–914.

    Article  CAS  PubMed  Google Scholar 

  • Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3, 2–20.

    Article  CAS  PubMed  Google Scholar 

  • Von Roepenack-Lahaye, E., Newman, M. A., Schornack, S., Hammond-Kosack, K. E., Lahaye, T., Jones, J. D., et al. (2003). p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. Journal of Biological Chemistry, 278(44), 43373–43383.

    Article  Google Scholar 

  • Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., et al. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant Journal, 63, 443–457.

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Wilkens, R. T., Spoerke, J. M., & Stamp, N. E. (1996). Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology, 77, 247–258.

    Article  Google Scholar 

  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zacares, L., Lopez-Gresa, M. P., Fayos, J., Primo, J., Belles, J. M., & Conejero, V. (2007). Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 20, 1439–1448.

    Article  CAS  PubMed  Google Scholar 

  • Zarate, S. I., Kempema, L. A., & Walling, L. L. (2007). Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiology, 143(2), 866–875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yariv Brotman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sade, D., Shriki, O., Cuadros-Inostroza, A. et al. Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars. Metabolomics 11, 81–97 (2015). https://doi.org/10.1007/s11306-014-0670-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0670-x

Keywords

Navigation