Skip to main content

Metabolomic approaches to the normal aging process

Abstract

Aging is a multifaceted process involving the accumulation of diverse deleterious changes in biological systems over time, so significant alterations in cellular metabolism are detected throughout aging. In the present study, the metabolic processes relevant to the normal aging process were investigated via non-targeted metabolomics using liquid chromatography–mass spectrometry. To exclude physiological and environmental differences, the metabolic profiles and the relevant metabolic pathways were analyzed in plasma from two separate study groups comprising two distinctly aged cohorts of healthy individuals, the elderly and the younger. The first group was recruited from an urban hospital, and the second group was recruited from a rural community. Alterations in fatty acid beta-oxidation, glycerophospholipid metabolism, and sphingolipid metabolism were identified as significant metabolic pathways relevant to normal aging. It was also found that sphingosine in sphingolipid metabolism, long-chain acylcarnitines in beta-oxidation, and lysophosphatidylcholines (LysoPCs) in glycerophospholipid metabolism could be critical candidate metabolites in the aging process. These results suggest that the metabolic profile of the healthiest individuals could be associated with the normal function of mitochondria, the primary organelle of redox homeostasis, as indicated by their low acylcarnitine to l-carnitine ratio and low levels of LysoPCs and sphingosine in plasma. The present study provides a critical contribution to the entire picture of the aging process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Beekman, M., Blanche, H., Perola, M., Hervonen, A., Bezrukov, V., Sikora, E., et al. (2013). Genome-wide linkage analysis for human longevity: Genetics of Healthy Aging Study. Aging Cell, 12(2), 184–193. doi:10.1111/acel.12039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bruunsgaard, H., Pedersen, M., & Pedersen, B. K. (2001). Aging and proinflammatory cytokines. Current Opinion in Hematology, 8(3), 131–136.

    CAS  Article  PubMed  Google Scholar 

  3. Bylesjo, M., Eriksson, D., Sjodin, A., Jansson, S., Moritz, T., & Trygg, J. (2007). Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics, 8, 207. doi:10.1186/1471-2105-8-207.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chalmers, R. A., Roe, C. R., Stacey, T. E., & Hoppel, C. L. (1984). Urinary excretion of l-carnitine and acylcarnitines by patients with disorders of organic acid metabolism: Evidence for secondary insufficiency of l-carnitine. Pediatric Research, 18(12), 1325–1328.

    CAS  Article  PubMed  Google Scholar 

  5. Choe, M., Jackson, C., & Yu, B. P. (1995). Lipid peroxidation contributes to age-related membrane rigidity. Free Radical Biology and Medicine, 18(6), 977–984.

    CAS  Article  PubMed  Google Scholar 

  6. Chung, H. Y., Cesari, M., Anton, S., Marzetti, E., Giovannini, S., Seo, A. Y., et al. (2009). Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Research Reviews, 8(1), 18–30. doi:10.1016/j.arr.2008.07.002.

    CAS  Article  PubMed  Google Scholar 

  7. Cooper, R. A. (1978). Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells. Journal of Supramolecular Structure, 8(4), 413–430. doi:10.1002/jss.400080404.

    CAS  Article  PubMed  Google Scholar 

  8. D’Adamo, P., Ulivi, S., Beneduci, A., Pontoni, G., Capasso, G., Lanzara, C., et al. (2010). Metabonomics and population studies: Age-related amino acids excretion and inferring networks through the study of urine samples in two Italian isolated populations. Amino Acids, 38(1), 65–73. doi:10.1007/s00726-008-0205-8.

    Article  PubMed  Google Scholar 

  9. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi:10.1038/nprot.2011.335.

    CAS  Article  PubMed  Google Scholar 

  10. Edsall, L. C., Van Brocklyn, J. R., Cuvillier, O., Kleuser, B., & Spiegel, S. (1998). N,N-dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: Modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry, 37(37), 12892–12898. doi:10.1021/bi980744d.

    CAS  Article  PubMed  Google Scholar 

  11. Findeisen, H. M., Pearson, K. J., Gizard, F., Zhao, Y., Qing, H., Jones, K. L., et al. (2011). Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS ONE, 6(4), e18532. doi:10.1371/journal.pone.0018532.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fouque, D., Holt, S., Guebre-Egziabher, F., Nakamura, K., Vianey-Saban, C., Hadj-Aissa, A., et al. (2006). Relationship between serum carnitine, acylcarnitines, and renal function in patients with chronic renal disease. Journal of Renal Nutrition, 16(2), 125–131. doi:10.1053/j.jrn.2006.01.004.

    Article  PubMed  Google Scholar 

  13. Gelinas, D. S., & McLaurin, J. (2005). PPAR-alpha expression inversely correlates with inflammatory cytokines IL-1beta and TNF-alpha in aging rats. Neurochemical Research, 30(11), 1369–1375. doi:10.1007/s11064-005-8341-y.

    CAS  Article  PubMed  Google Scholar 

  14. Gika, H. G., Macpherson, E., Theodoridis, G. A., & Wilson, I. D. (2008a). Evaluation of the repeatability of ultra-performance liquid chromatography–TOF-MS for global metabolic profiling of human urine samples. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 871(2), 299–305. doi:10.1016/j.jchromb.2008.05.048.

    CAS  Article  PubMed  Google Scholar 

  15. Gika, H. G., Theodoridis, G. A., Earll, M., & Wilson, I. D. (2012). A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis, 4(18), 2239–2247. doi:10.4155/bio.12.212.

    CAS  Article  PubMed  Google Scholar 

  16. Gika, H. G., Theodoridis, G. A., & Wilson, I. D. (2008b). Liquid chromatography and ultra-performance liquid chromatography–mass spectrometry fingerprinting of human urine: Sample stability under different handling and storage conditions for metabonomics studies. Journal of Chromatography A, 1189(1–2), 314–322. doi:10.1016/j.chroma.2007.10.066.

    CAS  Article  PubMed  Google Scholar 

  17. Gika, H. G., Theodoridis, G. A., Wingate, J. E., & Wilson, I. D. (2007). Within-day reproducibility of an HPLC–MS-based method for metabonomic analysis: Application to human urine. Journal of Proteome Research, 6(8), 3291–3303. doi:10.1021/pr070183p.

    CAS  Article  PubMed  Google Scholar 

  18. Gonzalez-Covarrubias, V., Beekman, M., Uh, H. W., Dane, A., Troost, J., Paliukhovich, I., et al. (2013). Lipidomics of familial longevity. Aging Cell, 12(3), 426–434. doi:10.1111/acel.12064.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Gregersen, N. (1985). The acyl-CoA dehydrogenation deficiencies. Recent advances in the enzymic characterization and understanding of the metabolic and pathophysiological disturbances in patients with acyl-CoA dehydrogenation deficiencies. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 174, 1–60.

    CAS  PubMed  Google Scholar 

  20. Grolleau-Julius, A., Ray, D., & Yung, R. L. (2010). The role of epigenetics in aging and autoimmunity. Clinical Reviews in Allergy and Immunology, 39(1), 42–50. doi:10.1007/s12016-009-8169-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. The Journal of Gerontology, 11(3), 298–300.

    CAS  Article  PubMed  Google Scholar 

  22. Hiona, A., & Leeuwenburgh, C. (2008). The role of mitochondrial DNA mutations in aging and sarcopenia: Implications for the mitochondrial vicious cycle theory of aging. Experimental Gerontology, 43(1), 24–33. doi:10.1016/j.exger.2007.10.001.

    CAS  Article  PubMed  Google Scholar 

  23. Hong, S. E., Heo, H. S., Kim, D. H., Kim, M. S., Kim, C. H., Lee, J., et al. (2010). Revealing system-level correlations between aging and calorie restriction using a mouse transcriptome. Age, 32(1), 15–30. doi:10.1007/s11357-009-9106-3.

    CAS  Article  PubMed  Google Scholar 

  24. Knight, J. A. (2000). The biochemistry of aging. Advances in Clinical Chemistry, 35, 1–62.

    CAS  Article  PubMed  Google Scholar 

  25. Kregel, K. C., & Zhang, H. J. (2007). An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292(1), R18–R36. doi:10.1152/ajpregu.00327.2006.

    CAS  Article  PubMed  Google Scholar 

  26. Kristal, B. S., & Shurubor, Y. I. (2005). Metabolomics: Opening another window into aging. Science of Aging Knowledge Environment, 2005(26), pe19. doi:10.1126/sageke.2005.26.pe19.

    Article  PubMed  Google Scholar 

  27. Lai, L., Michopoulos, F., Gika, H., Theodoridis, G., Wilkinson, R. W., Odedra, R., et al. (2010). Methodological considerations in the development of HPLC–MS methods for the analysis of rodent plasma for metabonomic studies. Molecular Biosystems, 6(1), 108–120. doi:10.1039/b910482h.

    CAS  Article  PubMed  Google Scholar 

  28. Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A. M., Guo, L., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9(4), 383–397. doi:10.2217/14622416.9.4.383.

    CAS  Article  PubMed  Google Scholar 

  29. Lehmann, R., Zhao, X., Weigert, C., Simon, P., Fehrenbach, E., Fritsche, J., et al. (2010). Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS ONE, 5(7), e11519. doi:10.1371/journal.pone.0011519.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leslie, C. C. (1997). Properties and regulation of cytosolic phospholipase A2. The Journal of Biological Chemistry, 272(27), 16709–16712.

    CAS  Article  PubMed  Google Scholar 

  31. Moyes, K. M., Drackley, J. K., Morin, D. E., Bionaz, M., Rodriguez-Zas, S. L., Everts, R. E., et al. (2009). Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARgamma signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics, 10, 542. doi:10.1186/1471-2164-10-542.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pearson, K. (1909). Determination of the coefficient of correlation. Science, 30(757), 23–25. doi:10.1126/science.30.757.23.

    CAS  Article  PubMed  Google Scholar 

  33. Pellkofer, R., & Sandhoff, K. (1980). Halothane increases membrane fluidity and stimulates sphingomyelin degradation by membrane-bound neutral sphingomyelinase of synaptosomal plasma membranes from calf brain already at clinical concentrations. Journal of Neurochemistry, 34(4), 988–992.

    CAS  Article  PubMed  Google Scholar 

  34. Pohjantahti-Maaroos, H., Palomaki, A., Kankkunen, P., Laitinen, R., Husgafvel, S., & Oksanen, K. (2010). Circulating oxidized low-density lipoproteins and arterial elasticity: Comparison between men with metabolic syndrome and physically active counterparts. Cardiovascular Diabetology, 9, 41. doi:10.1186/1475-2840-9-41.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Psihogios, N. G., Gazi, I. F., Elisaf, M. S., Seferiadis, K. I., & Bairaktari, E. T. (2008). Gender-related and age-related urinalysis of healthy subjects by NMR-based metabonomics. NMR in Biomedicine, 21(3), 195–207. doi:10.1002/nbm.1176.

    CAS  Article  PubMed  Google Scholar 

  36. Qin, Z. X., Zhu, H. Y., & Hu, Y. H. (2009). Effects of lysophosphatidylcholine on beta-amyloid-induced neuronal apoptosis. Acta Pharmacologica Sinica, 30(4), 388–395. doi:10.1038/aps.2009.25.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Rebouche, C. J., & Seim, H. (1998). Carnitine metabolism and its regulation in microorganisms and mammals. Annual Review of Nutrition, 18, 39–61. doi:10.1146/annurev.nutr.18.1.39.

    CAS  Article  PubMed  Google Scholar 

  38. Sacket, S. J., Chung, H. Y., Okajima, F., & Im, D. S. (2009). Increase in sphingolipid catabolic enzyme activity during aging. Acta Pharmacologica Sinica, 30(10), 1454–1461. doi:10.1038/aps.2009.136.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Sangster, T., Major, H., Plumb, R., Wilson, A. J., & Wilson, I. D. (2006). A pragmatic and readily implemented quality control strategy for HPLC–MS and GC–MS-based metabonomic analysis. The Analyst, 131(10), 1075–1078. doi:10.1039/b604498k.

    CAS  Article  PubMed  Google Scholar 

  40. Sheikh, A. M., & Nagai, A. (2011). Lysophosphatidylcholine modulates fibril formation of amyloid beta peptide. The FEBS Journal, 278(4), 634–642. doi:10.1111/j.1742-4658.2010.07984.x.

    CAS  Article  PubMed  Google Scholar 

  41. Slupsky, C. M., Rankin, K. N., Wagner, J., Fu, H., Chang, D., Weljie, A. M., et al. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79(18), 6995–7004. doi:10.1021/ac0708588.

    CAS  Article  PubMed  Google Scholar 

  42. Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., & Steinberg, D. (1984). Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of the United States of America, 81(12), 3883–3887.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Suhre, K., & Gieger, C. (2012). Genetic variation in metabolic phenotypes: Study designs and applications. Nature Reviews Genetics, 13(11), 759–769. doi:10.1038/nrg3314.

    CAS  Article  PubMed  Google Scholar 

  44. Sung, B., Park, S., Yu, B. P., & Chung, H. Y. (2006). Amelioration of age-related inflammation and oxidative stress by PPARgamma activator: Suppression of NF-kappaB by 2,4-thiazolidinedione. Experimental Gerontology, 41(6), 590–599. doi:10.1016/j.exger.2006.04.005.

    CAS  Article  PubMed  Google Scholar 

  45. Wick, G., & Grubeck-Loebenstein, B. (1997). Primary and secondary alterations of immune reactivity in the elderly: Impact of dietary factors and disease. Immunological Reviews, 160, 171–184.

    CAS  Article  PubMed  Google Scholar 

  46. Wick, G., Huber, L. A., Xu, Q. B., Jarosch, E., Schonitzer, D., & Jurgens, G. (1991). The decline of the immune response during aging: The role of an altered lipid metabolism. Annals of the New York Academy of Sciences, 621, 277–290.

    CAS  Article  PubMed  Google Scholar 

  47. Won, J. S., & Singh, I. (2006). Sphingolipid signaling and redox regulation. Free Radical Biology and Medicine, 40(11), 1875–1888. doi:10.1016/j.freeradbiomed.2006.01.035.

    CAS  Article  PubMed  Google Scholar 

  48. Woodward, M., Rumley, A., Lowe, G. D., & Tunstall-Pedoe, H. (2003). C-reactive protein: Associations with haematological variables, cardiovascular risk factors and prevalent cardiovascular disease. British Journal of Haematology, 122(1), 135–141.

    CAS  Article  PubMed  Google Scholar 

  49. Wu, D., Ren, Z., Pae, M., Guo, W., Cui, X., Merrill, A. H., et al. (2007). Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. Journal of Immunology, 179(7), 4829–4839.

    CAS  Article  Google Scholar 

  50. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(Web Server issue), W127–W133. doi:10.1093/nar/gks374.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Xing, J., Chen, X., Sun, Y., Luan, Y., & Zhong, D. (2005). Interaction of baicalin and baicalein with antibiotics in the gastrointestinal tract. The Journal of Pharmacy and Pharmacology, 57(6), 743–750. doi:10.1211/0022357056244.

    CAS  Article  PubMed  Google Scholar 

  52. Yu, B. P., Suescun, E. A., & Yang, S. Y. (1992). Effect of age-related lipid peroxidation on membrane fluidity and phospholipase A2: Modulation by dietary restriction. Mechanisms of Ageing and Development, 65(1), 17–33.

    CAS  Article  PubMed  Google Scholar 

  53. Yu, Z., Zhai, G., Singmann, P., He, Y., Xu, T., Prehn, C., et al. (2012). Human serum metabolic profiles are age dependent. Aging Cell, 11(6), 960–967. doi:10.1111/j.1474-9726.2012.00865.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Zou, Y., Kim, D. H., Jung, K. J., Heo, H. S., Kim, C. H., Baik, H. S., et al. (2009). Lysophosphatidylcholine enhances oxidative stress via the 5-lipoxygenase pathway in rat aorta during aging. Rejuvenation Research, 12(1), 15–24. doi:10.1089/rej.2008.0807.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Creative Fusion Research Program through the Creative Allied Project funded by the Korea Research Council of Fundamental Science and Technology (CAP-12-1), the Bio-Synergy Research Project (NRF-2013M3A9C4078145) of the Ministry of Science, ICT and Future Planning through the National Research Foundation and the Korea Institute of Science and Technology (KIST). We would like to especially thank Prof. Hyun Ok Kim (Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea) for her help with the serum biochemical analyses.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Byung Hwa Jung.

Additional information

Both Soo Hyun Lee and Sungha Park contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2084 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.H., Park, S., Kim, HS. et al. Metabolomic approaches to the normal aging process. Metabolomics 10, 1268–1292 (2014). https://doi.org/10.1007/s11306-014-0663-9

Download citation

Keywords

  • Metabolomics
  • Aging
  • UPLC–QTOF-MS
  • Acylcarnitines
  • Lysophospholipids
  • Sphingolipid metabolism