, Volume 10, Issue 4, pp 556–573 | Cite as

Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines

  • Farhana R. Pinu
  • Patrick J. B. Edwards
  • Sara Jouanneau
  • Paul A. Kilmartin
  • Richard C. Gardner
  • Silas G. Villas-BoasEmail author
Original Article


The pathway for the biogenesis of varietal thiols, such as 3-mercaptohexanol (3MH), 3-mercaptohexyl acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP) in Sauvignon blanc (SB) wines is still an open question. Varietal thiol development requires yeast activity, but poor correlation has been found between thiols and their putative respective precursors. This research is the first application of metabolomics to unravel metabolites in the grape juice that affect the production of varietal thiols in wines. Comprehensive metabolite profiling of 63 commercially harvested SB juices were performed by combining gas chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. These juices were fermented under controlled laboratory conditions using a commercial yeast strain (EC1118) at 15 °C. Correlation of thiol concentration in the wines with initial metabolite profiles identified 24 metabolites that showed positive correlation (R > 0.3) with both 3MH and 3MHA, while only glutamine had positive correlation with 4MMP. Subsequently, we carried out juice manipulation experiments by adding subsets of these 24 metabolites in a 2011 SB grape juice in order to validate the hypotheses generated by metabolomics. The juice manipulation results confirmed metabolomics hypotheses and revealed grape juice metabolites that significantly impact on the development of three major varietal thiols and other aroma compounds of SB wines.


Metabolite profiling Varietal thiols Correlation Juice manipulations NMR GC–MS 



We are grateful to Dr Katya Ruggerio, Victor Obolonkin and Raphael Aggio (SBS, University of Auckland) and to Kim-Anh Le Cao (University of Queensland, Australia) for statistical advice during the study. We also thank Mandy Herbst-Johnstone (Wine Science, University of Auckland), Soon Lee and Dang-Dung Nguyen (SBS, University of Auckland) for technical help. Funding for the project was provided by New Zealand Winegrowers, The New Zealand Ministry of Science and Innovation (contracts C11X1005) and the University of Auckland. We acknowledge the contribution of the winemakers and wineries around New Zealand for supplying grape juices for this project, including Andy Frost (Pernod Ricard), Hamish Clark (Saint Clair), Jody Hastie (VinPro, Otago), Kate Radburnd (C.J. Pask winery), Vidal wines, Trinity Hills Estate, and Constellation New Zealand. FP is a recipient of a New Zealand International Doctoral Research Scholarship (NZIDRS) from Education New Zealand and she is currently working as Post-doctoral Scientist in New Zealand Institute for Plant and Food Research Ltd.

Supplementary material

11306_2013_615_MOESM1_ESM.tif (7.5 mb)
Fig. S1 Weight loss of Sauvignon blanc ferments supplemented with different metabolites. Fermentation took place in 250-mL flasks containing 200-mL of juice, incubated at 15 °C under 100 rpm agitation. Data points show average weight loss (n = 3). GABA = γ-amino butyric acid, GSH = S-3-(hexan-1-ol)-glutathione, Cys-3MH = 3-S-cysteinylglycine hexan-1-ol, Cys-4MMP = 4-(4-methylpentan-2-one)-L-cysteine, DAP = Diammonium phosphate, YAN = Yeast assimiliable nitrogen, S-ethyl-cys = S-ethyl-cysteine and R > 0.40 = metabolites that had correlation coefficient (R) greater than 0.40 with varietal thiols (TIFF 7630 kb)
11306_2013_615_MOESM2_ESM.docx (30 kb)
Supplementary material 2 (DOCX 29 kb)
11306_2013_615_MOESM3_ESM.docx (25 kb)
Supplementary material 3 (DOCX 24 kb)
11306_2013_615_MOESM4_ESM.docx (19 kb)
Supplementary material 4 (DOCX 19 kb)
11306_2013_615_MOESM5_ESM.docx (16 kb)
Supplementary material 5 (DOCX 15 kb)
11306_2013_615_MOESM6_ESM.docx (17 kb)
Supplementary material 6 (DOCX 16 kb)
11306_2013_615_MOESM7_ESM.docx (14 kb)
Supplementary material 7 (DOCX 14 kb)
11306_2013_615_MOESM8_ESM.docx (12 kb)
Supplementary material 8 (DOCX 12 kb)


  1. Aggio, R., Villas-Boas, S. G., & Ruggiero, K. (2011). Metab: An R package for high-throughput analysis of metabolomics data generated by GC–MS. Bioinformatics, 27, 2316–2318.CrossRefPubMedGoogle Scholar
  2. Albers, E., Larsson, C., Lidén, G., Niklasson, C., & Gustafsson, L. (1996). Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Applied and Environmental Microbiology, 62, 3187–3195.PubMedPubMedCentralGoogle Scholar
  3. Ali, K., Maltese, F., Fortes, A. M., Pais, M. S., Verpoorte, R., & Choi, Y. H. (2011). Pre-analytical method for NMR-based grape metabolic fingerprinting and chemometrics. Analytica Chimica Acta, 703, 179–186.CrossRefPubMedGoogle Scholar
  4. Aliverdieva, D. A., & Mamaev, D. V. (2011). Succinate transport into Saccharomyces cerevisiae cells does not occur by way of formation of electroneutral complex with bivalent cations. Biochemistry (Moscow) Supplement Series A, 5, 212–213.CrossRefGoogle Scholar
  5. Aliverdieva, D. A., Mamaev, D. V., & Bondarenko, D. I. (2008). Plasmalemma dicarboxylate transporter of Saccharomyces cerevisiae is involved in citrate and succinate influx and is modulated by pH and cations. Biochemistry (Moscow) Supplement Series A, 2, 354–364.CrossRefGoogle Scholar
  6. Allen, T., Herbst-Johnstone, M., Girault, M., Butler, P., Logan, G., Jouanneau, S., et al. (2011). Influence of grape-harvesting steps on varietal thiol aromas in Sauvignon blanc wines. Journal of Agricultural and Food Chemistry, 59, 10641–10650.CrossRefPubMedGoogle Scholar
  7. Aluvila, S., Kotaria, R., Sun, J., Mayor, J. A., Walters, D. E., Harrison, D. H. T., et al. (2010). The yeast mitochondrial citrate transport protein: Molecular determinants of its substrate specificity. Journal of Biological Chemistry, 285, 27314–27326.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Antalick, G., Perello, M. C., & de Revel, G. (2010). Development, validation and application of a specific method for the quantitative determination of wine esters by headspace-solid-phase microextraction-gas chromatography–mass spectrometry. Food Chemistry, 121, 1236–1245.CrossRefGoogle Scholar
  9. Aubry, V., Etiévant, P. X., Giniès, C., & Henry, R. (1997). Quantitative determination of potent flavor compounds in burgundy pinot noir wines using a stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 45, 2120–2123.CrossRefGoogle Scholar
  10. Benkwitz, F., Nicolau, L., Lund, C., Beresford, M., Wohlers, M., & Kilmartin, P. A. (2012a). Evaluation of key odorants in Sauvignon blanc wines using three different methodologies. Journal of Agricultural and Food Chemistry, 60, 6293–6302.CrossRefPubMedGoogle Scholar
  11. Benkwitz, F., Tominaga, T., Kilmartin, P. A., Lund, C., Wohlers, M., & Nicolau, L. (2012b). Identifying the chemical composition related to the distinct aroma characteristics of New Zealand Sauvignon blanc wines. American Journal of Enology and Viticulture, 63, 62–72.CrossRefGoogle Scholar
  12. Capone, D. L., Pardon, K. H., Cordente, A. G., & Jeffery, D. W. (2011a). Identification and quantitation of 3-S-cysteinylglycinehexan-1-ol (Cysgly-3-MH) in Sauvignon blanc grape juice by HPLC–MS/MS. Journal of Agricultural and Food Chemistry, 59, 11204–11210.CrossRefPubMedGoogle Scholar
  13. Capone, D. L., Sefton, M. A., & Jeffery, D. W. (2011b). Application of a modified method for 3-mercaptohexan-1-ol determination to investigate the relationship between free thiol and related conjugates in grape juice and wine. Journal of Agricultural and Food Chemistry, 59, 4649–4658.CrossRefPubMedGoogle Scholar
  14. Celton, M., Sanchez, I., Goelzer, A., Fromion, V., Camarasa, C., & Dequin, S. (2012). A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics, 13, 317.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen, Y., Li, S., Xiong, J., Li, Z., Bai, J., Zhang, L., et al. (2010). The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5′-monophosphate by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 86, 75–81.CrossRefPubMedGoogle Scholar
  16. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  17. Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., et al. (2008). Metabolite identification via the Madison Metabolomics Consortium Database [3]. Nature Biotechnology, 26, 162–164.CrossRefPubMedGoogle Scholar
  18. Des Gachons, C. P., Tominaga, T., & Dubourdieu, D. (2002). Sulfur aroma precursor present in S-glutathione conjugate form: Identification of S-3-(Hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon blanc. Journal of Agricultural and Food Chemistry, 50, 4076–4079.CrossRefGoogle Scholar
  19. Des Gachons, C. P., Van Leeuwen, C., Tominaga, T., Soyer, J. P., Gaudillère, J. P., & Dubourdieu, D. (2005). Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L. cv Sauvignon blanc in field conditions. Journal of the Science of Food and Agriculture, 85, 73–85.CrossRefGoogle Scholar
  20. Dubourdieu, D., Tominaga, T., Masneuf, I., Des Gachons, C. P., & Murat, M. L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. American Journal of Enology and Viticulture, 57, 81–88.Google Scholar
  21. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. TrAC—Trends in Analytical Chemistry, 24, 285–294.CrossRefGoogle Scholar
  22. Edwards, I. J., & O’flaherty, J. T. (2008). Omega-3 fatty acids and PPAR gamma in cancer. PPAR Research, 2008, 358052.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Escudero, A., Campo, E., Fariña, L., Cacho, J., & Ferreira, V. (2007). Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. Journal of Agricultural and Food Chemistry, 55, 4501–4510.CrossRefPubMedGoogle Scholar
  24. Fedrizzi, B., Pardon, K. H., Sefton, M. A., Elsey, G. M., & Jeffery, D. W. (2009). First Identification of 4-S-glutathionyl-4-methylpentan-2-one, a potential precursor of 4-mercapto-4-methylpentan-2-one, in Sauvignon blanc juice. Journal of Agricultural and Food Chemistry, 57, 991–995.CrossRefPubMedGoogle Scholar
  25. Ferreira, V., López, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 80, 1659–1667.CrossRefGoogle Scholar
  26. Gómez-Míguez, M. J., Cacho, J. F., Ferreira, V., Vicario, I. M., & Heredia, F. J. (2007). Volatile components of Zalema white wines. Food Chemistry, 100, 1464–1473.CrossRefGoogle Scholar
  27. Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white wine varieties. Journal of Agricultural and Food Chemistry, 45, 3027–3032.CrossRefGoogle Scholar
  28. Hall, R. D., & Hardy, N. W. (2012). Practical applications of metabolomics in plant biology. Methods in Molecular Biology, 806, 1–10.CrossRefGoogle Scholar
  29. Harsch, M. J., Benkwitz, F., Frost, A., Colonna-Ceccaldi, B., Gardner, R. C., & Salmon, J.-M. (2013). New precursor of 3-mercaptohexan-1-ol in grape juice: Thiol-forming potential and kinetics during early stages of must fermentation. Journal of Agricultural and Food Chemistry, 61, 3703–3713.CrossRefPubMedGoogle Scholar
  30. Harsch, M. J., & Gardner, R. C. (2013). Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon blanc musts. Applied Microbiology and Biotechnology, 97, 223–235.CrossRefPubMedGoogle Scholar
  31. Hebditch, K. R., Nicolau, L., & Brimble, M. A. (2007). Synthesis of isotopically labelled thiol volatiles and cysteine conjugates for quantification of Sauvignon blanc wine. Journal of Labelled Compounds & Radiopharmaceuticals, 50, 237–243.CrossRefGoogle Scholar
  32. Jiang, B., & Zhang, Z. (2010). Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the loess plateau region of China. Molecules, 15, 9184–9196.CrossRefPubMedGoogle Scholar
  33. Jouanneau, S., Weaver, R. J., Nicolau, L., Herbst-Johnstone, M., Benkwitz, F., & Kilmartin, P. A. (2012). Subregional survey of aroma compounds in marlborough sauvignon blanc wines. Australian Journal of Grape and Wine Research, 18, 329–343.CrossRefGoogle Scholar
  34. Kobayashi, H., Suzuki, S., & Takayanagi, T. (2011). Correlations between climatic conditions and berry composition of ‘Koshu’ (Vitis vinifera) grape in Japan. Journal of the Japanese Society for Horticultural Science, 80, 255–267.CrossRefGoogle Scholar
  35. Komes, D., Ulrich, D., & Lovric, T. (2006). Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. European Food Research and Technology, 222, 1–7.CrossRefGoogle Scholar
  36. Košir, I. J., & Kidrič, J. (2002). Use of modern nuclear magnetic resonance spectroscopy in wine analysis: Determination of minor compounds. Analytica Chimica Acta, 458, 77–84.CrossRefGoogle Scholar
  37. Le Cao, K.-A., Martin, P. G. P., Robert-Granie, C., & Besse, P. (2009). Sparse canonical methods for biological data integration: Application to a cross-platform study. BMC Bioinformatics, 10, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee, J. E., Hwang, G. S., Van Den Berg, F., Lee, C. H., & Hong, Y. S. (2009). Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study. Analytica Chimica Acta, 648, 71–76.CrossRefPubMedGoogle Scholar
  39. Lee, S. A., Rick, F. E., Dobson, J., Reeves, M., Clark, H., Thomson, M., et al. (2008). Grape juice is the major influence on volatile thiol aromas in Sauvignon blanc. The Australian & New Zealand Grapegrower & Winemaker, 533, 78–86.Google Scholar
  40. Lewis, I. A., Shortreed, M. R., Hegeman, A. D., & Markley, J. L. (2012). Novel NMR and MS approaches to metabolomics. In T. Fan, R. M. Higashi, & A. N. Lane (Eds.), The handbook of metabolomics. New York: Humana Press.Google Scholar
  41. Li, H., Tao, Y. S., Wang, H., & Zhang, L. (2008). Impact odorants of Chardonnay dry white wine from Changli County (China). European Food Research and Technology, 227(1), 287–292.CrossRefGoogle Scholar
  42. Long, D., Wilkinson, K. L., Poole, K., Taylor, D. K., Warren, T., Astorga, A. M., et al. (2012). Rapid method for proline determination in grape juice and wine. Journal of Agricultural and Food Chemistry, 60, 4259–4264.CrossRefPubMedGoogle Scholar
  43. López, R., Ferreira, V., Hernández, P., & Cacho, J. F. (1999). Identification of impact odorants of young red wines made with Merlot, Cabernet Sauvignon and Grenache grape varieties: A comparative study. Journal of the Science of Food and Agriculture, 79, 1461–1467.CrossRefGoogle Scholar
  44. Lund, C. M., Thompson, M. K., Benkwitz, F., Wohler, M. W., Triggs, C. M., Gardner, R., et al. (2009). New Zealand Sauvignon blanc distinct flavor characteristics: Sensory, chemical, and consumer aspects. American Journal of Enology and Viticulture, 60, 1–12.Google Scholar
  45. Makhotkina, O., Herbst-Johnstone, M., Logan, G., Du Toit, W., & Kilmartin, P. A. (2013). Influence of sulfur dioxide additions at harvest on polyphenols, C6-compounds, and varietal thiols in Sauvignon blanc. American Journal of Enology and Viticulture, 64, 203–213.CrossRefGoogle Scholar
  46. Moonjai, N., Verstrepen, K. J., Delvaux, F. R., Derdelinckx, G., & Verachtert, H. (2002). The effects of linoleic acid supplementation of cropped yeast on its subsequent fermentation performance and acetate ester synthesis. Journal of the Institute of Brewing, 108, 227–235.CrossRefGoogle Scholar
  47. Moonjai, N., Verstrepen, K. J., Shen, H. Y., Derdelinckx, G., Verachtert, H., & Delvaux, F. R. (2003). Linoleic acid supplementation of a cropped brewing lager strain: Effects on subsequent fermentation performance with serial repitching. Journal of the Institute of Brewing, 109, 262–272.CrossRefGoogle Scholar
  48. Murat, M. L., Masneuf, I., Darriet, P., Lavigne, V., Tominaga, T., & Dubourdieu, D. (2001). Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. American Journal of Enology and Viticulture, 52, 136–139.Google Scholar
  49. Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biology Reviews, 82, 591–605.CrossRefGoogle Scholar
  50. New Zealand Winegrowers. (2012). Statistical annual report. Accessed 10 Mar 2013.
  51. Patel, P., Herbst-Johnstone, M., Lee, S. A., Gardner, R. C., Weaver, R., Nicolau, L., et al. (2010). Influence of juice pressing conditions on polyphenols, antioxidants, and varietal aroma of Sauvignon blanc microferments. Journal of Agricultural and Food Chemistry, 58, 7280–7288.CrossRefPubMedGoogle Scholar
  52. Pereira, G. E., Gaudillere, J. P., Leeuwen, C. V., Hilbert, G., Maucourt, M., Deborde, C., et al. (2006). 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563, 346–352.CrossRefGoogle Scholar
  53. Pinu, F. R., Jouanneau, S., Nicolau, L., Gardner, R. C., & Villas-Boas, S. G. (2012). Concentrations of the volatile thiol 3-mercaptohexanol in Sauvignon blanc wines: No correlation with juice precursors. American Journal of Enology and Viticulture, 63, 407–412.CrossRefGoogle Scholar
  54. Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLoS ONE, 6, e16957.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rapp, A. (1998). Volatile flavour of wine: correlation between instrumental analysis and sensory perception. Die Nahrung, 42, 351–363.CrossRefPubMedGoogle Scholar
  56. Rocha, S. M., Rodrigues, F., Coutinho, P., Delgadillo, I., & Coimbra, M. A. (2004). Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Analytica Chimica Acta, 513, 257–262.CrossRefGoogle Scholar
  57. Roland, A., Schneider, R., Razungles, A., Le Guernevé, C., & Cavelier, F. (2010a). Straightforward synthesis of deuterated precursors to demonstrate the biogenesis of aromatic thiols in wine. Journal of Agricultural and Food Chemistry, 58, 10684–10689.CrossRefPubMedGoogle Scholar
  58. Roland, A., Vialaret, J., Moniatte, M., Rigou, P., Razungles, A., & Schneider, R. (2010b). Validation of a nanoliquid chromatography-tandem mass spectrometry method for the identification and the accurate quantification by isotopic dilution of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one in white grape juices. Journal of Chromatography A, 1217, 1626–1635.CrossRefPubMedGoogle Scholar
  59. Roland, A., Vialaret, J., Razungles, A., Rigou, P., & Schneider, R. (2010c). Evolution of S-cysteinylated and S-glutathionylated thiol precursors during oxidation of melon B. and Sauvignon blanc Musts. Journal of Agricultural and Food Chemistry, 58, 4406–4413.CrossRefPubMedGoogle Scholar
  60. Roncoroni, M., Santiago, M., Hooks, D. O., Moroney, S., Harsch, M. J., Lee, S. A., et al. (2011). The yeast IRC7 gene encodes a beta-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiology, 28, 926–935.CrossRefPubMedGoogle Scholar
  61. Sadras, V. O., & Petrie, P. R. (2011). Climate shifts in south-eastern Australia: Early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Australian Journal of Grape and Wine Research, 17, 199–205.CrossRefGoogle Scholar
  62. Saharan, R. K., Kanwal, S., & Sharma, S. C. (2010). Role of glutathione in ethanol stress tolerance in yeast Pachysolen tannophilus. Biochemical and Biophysical Research Communications, 397, 307–310.CrossRefPubMedGoogle Scholar
  63. Salmon, J. M., & Barre, P. (1998). Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Applied and Environmental Microbiology, 64, 3831–3837.PubMedPubMedCentralGoogle Scholar
  64. Schneider, R., Charrier, F., Razungles, A., & Baumes, R. (2006). Evidence for an alternative biogenetic pathway leading to 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-one in wines. Analytica Chimica Acta, 563, 58–64.CrossRefGoogle Scholar
  65. Shulaev, V. (2006). Metabolomics technology and bioinformatics. Briefings in Bioinformatics, 7, 128–139.CrossRefPubMedGoogle Scholar
  66. Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Bôas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography–mass spectrometry. Nature Protocols, 5, 1709–1729.CrossRefPubMedGoogle Scholar
  67. Smith, C. A., Want, E. J., O’maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.CrossRefPubMedGoogle Scholar
  68. Son, H. S., Ki, M. K., Van Den Berg, F., Hwang, G. S., Park, W. M., Lee, C. H., et al. (2008). 1H nuclear magnetic resonance-based metabolomic characterization of wines by grape varieties and production areas. Journal of Agricultural and Food Chemistry, 56, 8007–8016.CrossRefPubMedGoogle Scholar
  69. Soyer, Y., Koca, N., & Karadeniz, F. (2003). Organic acid profile of Turkish white grapes and grape juices. Journal of Food Composition and Analysis, 16, 629–636.CrossRefGoogle Scholar
  70. Subileau, M., Schneider, R., Salmon, J. M., & Degryse, E. (2008). New insights on 3-mercaptohexanol (3MH) biogenesis in Sauvignon blanc wines: Cys-3MH and (E)-Hexen-2-al are not the major precursors. Journal of Agricultural and Food Chemistry, 56, 9230–9235.CrossRefPubMedGoogle Scholar
  71. Sumner, L. W. (2010). Recent advances in plant metabolomics and greener pastures. F1000 Biology Reports, 2.Google Scholar
  72. Swiegers, J. H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., et al. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.CrossRefPubMedGoogle Scholar
  73. Swiegers, J. H., & Pretorius, I. S. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74, 954–960.CrossRefPubMedGoogle Scholar
  74. Thibon, C., Marullo, P., Claisse, O., Cullin, C., Dubourdieu, D., & Tominaga, T. (2008). Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Research, 8, 1076–1086.CrossRefPubMedGoogle Scholar
  75. Thurston, P. A., Taylor, R., & Ahvenainen, J. (1981). Effects of linoleic acid supplements on the synthesis by yeast of lipids and acetate esters. Journal of the Institute of Brewing, 87, 92.CrossRefGoogle Scholar
  76. Tominaga, T., Blanchard, L., Darriet, P., & Dubourdieu, D. (2000). A powerful aromatic volatile thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several Vitis vinifera grape varieties. Journal of Agricultural and Food Chemistry, 48, 1799–1802.CrossRefPubMedGoogle Scholar
  77. Tominaga, T., Darriet, P. & Dubourdieu, D. (1996). Identification of 3-mercaptohexyl acetate in Sauvignon wine, a powerful aromatic compound exhibiting box-tree odor. Identification de l’acétate de 3-mercaptohexanol, composé à forte odeur de buis, intervenant dans l’arôme des vins de Sauvignon, 35, 207–210.Google Scholar
  78. Tominaga, T., Des Gachons, C. P., & Dubourdieu, D. (1998a). A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon blanc: S-Cysteine conjugates. Journal of Agricultural and Food Chemistry, 46, 5215–5219.CrossRefGoogle Scholar
  79. Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998b). Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour and Fragrance Journal, 13, 159–162.CrossRefGoogle Scholar
  80. Uemura, H. (2012). Synthesis and production of unsaturated and polyunsaturated fatty acids in yeast: Current state and perspectives. Applied Microbiology and Biotechnology, 95, 1–12.CrossRefPubMedGoogle Scholar
  81. Villas-Bôas, S. G., Delicado, D. G., Åkesson, M., & Nielsen, J. (2003). Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography–mass spectrometry. Analytical Biochemistry, 322, 134–138.CrossRefPubMedGoogle Scholar
  82. Villas-Bôas, S. G., Noel, S., Lane, G. A., Attwood, G., & Cookson, A. (2006). Extracellular metabolomics: A metabolic footprinting approach to assess fiber degradation in complex media. Analytical Biochemistry, 349, 297–305.CrossRefPubMedGoogle Scholar
  83. Villas-Bôas, S. G., Rasmussen, S., & Lane, G. A. (2005). Metabolomics or metabolite profiles? Trends in Biotechnology, 23, 385–386.CrossRefPubMedGoogle Scholar
  84. Villas-Boas, S. G., Roeseener, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (2007). Metabolomics analysis: An introduction. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  85. Winter, G., Van Der Westhuizen, T., Higgins, V. J., Curtin, C., & Ugliano, M. (2011). Contribution of cysteine and glutathione conjugates to the formation of the volatile thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) during fermentation by Saccharomyces cerevisiae. Australian Journal of Grape and Wine Research, 17, 285–290.CrossRefGoogle Scholar
  86. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3, 1769–1782.CrossRefPubMedGoogle Scholar
  87. Wünschmann, J., Krajewski, M., Letzel, T., Huber, E. M., Ehrmann, A., Grill, E., et al. (2010). Dissection of glutathione conjugate turnover in yeast. Phytochemistry, 71, 54–61.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Farhana R. Pinu
    • 1
  • Patrick J. B. Edwards
    • 2
  • Sara Jouanneau
    • 3
  • Paul A. Kilmartin
    • 3
  • Richard C. Gardner
    • 1
    • 3
  • Silas G. Villas-Boas
    • 1
    Email author
  1. 1.Centre for Microbial Innovation, School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
  3. 3.Wine Science Programme, School of Chemical SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations