Skip to main content
Log in

New finding of nalbuphine metabolites in men: NMR spectroscopy and UPLC–MS/MS spectrometry assays in a pilot human study

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A safe and efficient semi-synthetic narcotic nalbuphine (NAL) which was broadly applied in analgesic therapy has long been considered to eliminate from human body via phase II conjugation. However, up to the present, neither the complete metabolic pathways nor the identified metabolites of NAL have been clarified in documented reports. In this study, four novel metabolites were discovered by incubating NAL with human liver microsomes. These metabolites were later quantified in blood samples from human volunteers treated with NAL. An accurate and precise new method for simultaneously determining NAL and its metabolites was also established. Their chemical structures were elucidated on the basis of one- and two-dimensional NMR spectroscopic analyses including 1H–1H correlation spectroscopy, nuclear overhauser enhancement spectroscopy, heteronuclear single-quantum correlation, and heteronuclear multiple bond correlation, and further confirmed by mass spectrometry. The analytical method was validated and applied successfully to a pilot human study with ultra-high performance liquid chromatography–tandem mass spectrometry employed with positive ion electrospray ionization via multiple reaction monitoring mode. This is the first report on the qualitative and quantitative analysis of NAL coupled with its two hydroxylated (3′-hydroxynalbuphine and 4′-hydroxynalbuphine) and two conjugated metabolites (nalbuphine-3-β-d-glucuronide and nalbuphine-6-β-d-glucuronide). The present method offers a rapid and simple way of performing pharmacokinetic studies of NAL, and assists in elucidating its metabolic pathway in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

UGTs:

Uridinyl diphosphate glucuronosyltransferases

P450s:

Cytochrome P450s

UPLC–MS/MS:

Ultra-high performance liquid chromatography-tandem mass spectrometry

1H NMR:

Proton nuclear magnetic resonance

NAL:

Nalbuphine

NAX:

Naloxone

N3G:

Nalbuphine-3-β-d-glucuronide

N6G:

Nalbuphine-6-β-d-glucuronide

3′-OH NAL:

3′-Hydroxynalbuphine

4′-OH NAL:

4′-Hydroxynalbuphine

COSY:

Correlation spectroscopy

NOESY:

Nuclear Overhauser enhancement spectroscopy

HSQC:

Heteronuclear single-quantum correlation

HMBC:

Heteronuclear multiple bond correlation

QC:

Quality control

LLOQ:

Low limit of quantification

HLMs:

Human liver microsomes

References

  • Agrawal, P. K. (1992). NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry, 31(10), 3307–3330.

    Article  CAS  PubMed  Google Scholar 

  • Aitkenhead, A. R., Lin, E. S., & Achola, K. J. (1988). The pharmacokinetics of oral and intravenous nalbuphine in healthy volunteers. British Journal of Clinical Pharmacology, 25(2), 264–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver, W. T., Feise, G. A., & Robb, D. (1981). Analgesic effect of intramuscular and oral nalbuphine in postoperative pain. Clinical Pharmacology and Therapeutics, 29(2), 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Cai, L. J., Zhang, J., Wang, X. M., Zhu, R. H., Yang, J., Zhang, Q. Z., et al. (2011). Validated LC-MS/MS assay for the quantitative determination of nalbuphine in human plasma and its application to a pharmacokinetic study. Biomedical Chromatography, 25(12), 1308–1314.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y., Moody, D. E., & McCance-Katz, E. F. (2006). Novel metabolites of buprenorphine detected in human liver microsomes and human urine. Drug Metabolism and Disposition, 34(3), 440–448.

    CAS  PubMed  Google Scholar 

  • Coffman, B. L., Kearney, W. R., Goldsmith, S., Knosp, B. M., & Tephly, T. R. (2003). Opioids bind to the amino acids 84 to 118 of UDP-glucuronosyltransferase UGT2B7. Molecular Pharmacology, 63(2), 283–288.

    Article  CAS  PubMed  Google Scholar 

  • Coffman, B. L., King, C. D., Rios, G. R., & Tephly, T. R. (1998). The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metabolism and Disposition, 26(1), 73–77.

    CAS  PubMed  Google Scholar 

  • de Cazanove, F., Kinowski, J. M., Audran, M., Rochette, A., & Bressolle, F. (1997). Determination of nalbuphine in human plasma by high-performance liquid chromatography with electrochemical detection. Application to a pharmacokinetic study. Journal of Chromatography B: Biomedical Sciences and Applications, 690(1–2), 203–210.

    Article  PubMed  Google Scholar 

  • Errick, J. K., & Heel, R. C. (1983). Nalbuphine. A preliminary review of its pharmacological properties and therapeutic efficacy. Drugs, 26(3), 191–211.

    Article  CAS  PubMed  Google Scholar 

  • FDA, US Department of Health and Human Services. (2001). Guidance for Industry: bioanalytical method validation. http://www.fda.gov/cder/guidance/4252fnl.pdf.

  • Feierman, D. E., & Lasker, J. M. (1996). Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. Drug Metabolism and Disposition, 24(9), 932–939.

    CAS  PubMed  Google Scholar 

  • Hasselstrom, J., & Sawe, J. (1993). Morphine pharmacokinetics and metabolism in humans. Enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clinical Pharmacokinetics, 24(4), 344–354.

    Article  CAS  PubMed  Google Scholar 

  • Ho, S. T., Wang, J. J., Hu, O. Y. P., Chiang, P. S., & Lee, S. C. (1996). Determination of nalbuphine by high-performance liquid chromatography with ultraviolet detection: Application to human and rabbit pharmacokinetic studies. Journal of Chromatography B: Biomedical Sciences and Applications, 678(2), 289–296.

    Article  CAS  Google Scholar 

  • King, C. D., Rios, G. R., Green, M. D., Mackenzie, P. I., & Tephly, T. R. (1997). Comparison of stably expressed rat UGT1.1 and UGT2B1 in the glucuronidation of opioid compounds. Drug Metabolism and Disposition, 25(2), 251–255.

    CAS  PubMed  Google Scholar 

  • King, C. D., Rios, G. R., Green, M. D., & Tephly, T. R. (2000). UDP-glucuronosyltransferases. Current Drug Metabolism, 1(2), 143–161.

    Article  CAS  PubMed  Google Scholar 

  • Kostiainen, R., Kotiaho, T., Kuuranne, T., & Auriola, S. (2003). Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry, 38(4), 357–372.

    Article  CAS  PubMed  Google Scholar 

  • Lo, M. W., Schary, W. L., & Whitney, C. C., Jr. (1987). The disposition and bioavailability of intravenous and oral nalbuphine in healthy volunteers. Journal of Clinical Pharmacology, 27(11), 866–873.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  PubMed  Google Scholar 

  • Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry, 75(13), 3019–3030.

    Article  CAS  PubMed  Google Scholar 

  • Nicolle, E., Michaut, S., Serre-Debeauvais, F., & Bessard, G. (1995). Rapid and sensitive high-performance liquid chromatographic assay for nalbuphine in plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 663(1), 111–117.

    Article  CAS  Google Scholar 

  • Pao, L. H., Hsiong, C. H., Hu, O. Y. P., & Ho, S. T. (2000). High-performance liquid chromatographic method for the simultaneous determination of nalbuphine and its prodrug, sebacoyl dinalbuphine ester, in dog plasma and application to pharmacokinetic studies in dogs. Journal of Chromatography B: Biomedical Sciences and Applications, 746(2), 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Pao, L. H., Hu, O. Y. P., Fan, H. Y., Lin, C. C., Liu, L. C., & Huang, P. W. (2012). Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo. American Journal of Chinese Medicine, 40(1), 57–73.

    Article  PubMed  Google Scholar 

  • Projean, D., Morin, P. E., Tu, T. M., & Ducharme, J. (2003). Identification of CYP3A4 and CYP2C8 as the major cytochrome P450 s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica, 33(8), 841–854.

    Article  CAS  PubMed  Google Scholar 

  • Pugh, C. C., & Drummond, R. A. (1987). A dose-response study with nalbuphine hydrochloride for pain in patients after upper abdominal surgery. British Journal of Anaesthesia, 59(11), 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, W. K., Tam, S. W., Shotzberger, G. S., Smith, D. H., Jr, Clark, R., & Vernier, V. G. (1985). Nalbuphine. Drug and Alcohol Dependence, 14(3–4), 339–362.

    Article  CAS  PubMed  Google Scholar 

  • Yoo, Y. C., Chung, H. S., Kim, I. S., Jin, W. T., & Kim, M. K. (1995). Determination of nalbuphine in drug abusers’ urine. Journal of Analytical Toxicology, 19(2), 120–123.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Department of Health, Executive Yuan of Taiwan (No. DOH97-TD-I-111-DD002).

Conflict of interest

No conflicts of interest are declared by all of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Yoa-Pu Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HJ., Hsiong, CH., Pao, LH. et al. New finding of nalbuphine metabolites in men: NMR spectroscopy and UPLC–MS/MS spectrometry assays in a pilot human study. Metabolomics 10, 709–718 (2014). https://doi.org/10.1007/s11306-013-0605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0605-y

Keywords

Navigation