Skip to main content

Advertisement

Log in

Comparative analysis of plasma metabolomics response to metabolic challenge tests in healthy subjects and influence of the FTO obesity risk allele

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The measurement of metabolites during intravenous or nutritional challenges may improve the identification of novel metabolic signatures which are not detectable in the fasting state. Here, we comprehensively characterized the plasma metabolomics response to five defined challenge tests and explored their use to identify interactions with the FTO rs9939609 obesity risk genotype. Fifty-six non-diabetic male participants of the KORA S4/F4 cohort, including 25 homozygous carriers of the FTO risk allele (AA genotype) and 31 carriers of the TT genotype were recruited. Challenges comprised an oral glucose tolerance test, a standardized high-fat high-carbohydrate meal and a lipid tolerance test, as well as an intravenous glucose tolerance test and a euglycemic hyperinsulinemic clamp. Blood was sampled for biochemical and metabolomics measurement before and during the challenges. Plasma samples were analyzed using a mass spectrometry-based metabolomics approach targeting 163 metabolites. Linear mixed-effects models and cluster analysis were performed. In both genotype groups, we observed significant challenge-induced changes for all major metabolite classes (amino acids, hexose, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, with corrected p-values ranging from 0.05 to 6.7E−37), which clustered in five distinct metabolic response profiles. Our data contribute to the understanding of plasma metabolomics response to diverse metabolic challenges, including previously unreported metabolite changes in response to intravenous challenges. The FTO genotype had only minor effects on the metabolite fluxes after standardized metabolic challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57, 289–300.

    Google Scholar 

  • Berulava, T., & Horsthemke, B. (2010). The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. European Journal of Human Genetics, 18, 1054–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard, C. (2008). Gene-environment interactions in the etiology of obesity: Defining the fundamentals. Obesity, 16(Suppl 3), S5–S10.

    Article  CAS  PubMed  Google Scholar 

  • D’Orazio, P., Burnett, R. W., Fogh-Andersen, N., et al. (2005). Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clinical Chemistry, 51, 1573–1576.

    Article  PubMed  Google Scholar 

  • Deo, R. C., Hunter, L., Lewis, G. D., et al. (2010). Interpreting metabolomic profiles using unbiased pathway models. PLoS Computational Biology, 6, e1000692.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donchenko, V., Zannetti, A., & Baldini, P. M. (1994). Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. Biochimica et Biophysica Acta, 1222, 492–500.

    Article  CAS  PubMed  Google Scholar 

  • Duvillard, L., Florentin, E., Lizard, G., et al. (2003). Cell surface expression of LDL receptor is decreased in type 2 diabetic patients and is normalized by insulin therapy. Diabetes Care, 26(5), 1540–1544.

    Article  CAS  PubMed  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap (1st ed.). Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  • Fall, T., Hägg, S., Mägi, R., et al. (2013). The role of adiposity in cardiometabolic traits: a mendelian randomization analysis. PLoS Med, 10, e1001474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine-Bisson, B., Wolever, T. M. S., Chiasson, J.-L., et al. (2007). Tumor necrosis factor alpha-238G > A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. Metabolism, 56, 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Franks, P. W., Ekelund, U., Brage, S., et al. (2007). PPARGC1A coding variation may initiate impaired NEFA clearance during glucose challenge. Diabetologia, 50, 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayling, T. M., Timpson, N. J., Weedon, M. N., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freathy, R. M., Timpson, N. J., Lawlor, D. A., et al. (2008). Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes, 57, 1419–1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genolini, Christophe, & Falissard, B. (2010). KmL: k-means for longitudinal data. Computational Statistics, 25(2), 317–328.

    Article  Google Scholar 

  • Genolini, C., Pingault, J. B., Driss, T., et al. (2013). KmL3D: a non-parametric algorithm for clustering joint trajectories. Computer Methods and Programs in Biomedicine, 109, 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Gerken, T., Girard, C. A., Tung, Y.-C. L., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 318, 1469–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getty-Kaushik, L., Song, D. H., Boylan, M. O., Corkey, B. E., & Wolfe, M. M. (2006). Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. Obesity, 14, 1124–1131.

    Article  CAS  PubMed  Google Scholar 

  • Gieger, C., Geistlinger, L., Altmaier, E., et al. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4, e1000282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamel, F. G., Bennett, R. G., Upward, J. L., & Duckworth, W. C. (2001). Insulin inhibits peroxisomal fatty acid oxidation in isolated rat hepatocytes. Endocrinology, 142, 2702–2706.

    CAS  PubMed  Google Scholar 

  • He, M., Su, H., Gao, W., et al. (2010). Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. PLoS One, 5, e14205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho, J. E., Larson, M. G., Vasan, R. S., et al. (2013). Metabolite profiles during oral glucose challenge. Diabetes, 62, 2689–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzapfel, C., Grallert, H., Huth, C., et al. (2010). Genes and lifestyle factors in obesity: results from 12,462 subjects from MONICA/KORA. International Journal of Obesity, 34, 1538–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illig, T., Gieger, C., Zhai, G., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Kolz, M., Johnson, T., Sanna, S., et al. (2009). Meta-analysis of 28,141 individuals identifies common variants within Five new loci that influence uric acid concentrations. PLoS Genetics, 5, e1000504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krug, S., Kastenmüller, G., Stückler, F., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26, 2607–2619.

    Article  CAS  PubMed  Google Scholar 

  • Krumsiek, J., Suhre, K., Illig, T., Adamski, J., & Theis, F. J. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Systems Biology, 5, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumsiek, J., Suhre, K., Illig, T., Adamski, J., & Theis, F. J. (2012). Bayesian independent component analysis recovers pathway signatures from blood metabolomics data. Journal of Proteome Research, 11, 4120–4131.

    Article  CAS  PubMed  Google Scholar 

  • Kryszczuk, K., & Hurley, P. (2010). Estimation of the number of clusters using multiple clustering validity indices. In N. Gayar, J. Kittler, & F. Roli (Eds.), Multiple classifier systems. Berlin: Springer.

    Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Hong, S.-W., Rhee, E.-J., & Lee, W.-Y. (2012). GLP-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes & Metabolism, 36, 262–267.

    Article  CAS  Google Scholar 

  • Lopez-Miranda, J., Williams, C., & Lairon, D. (2007). Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. The British Journal of Nutrition, 98, 458–473.

    Article  CAS  PubMed  Google Scholar 

  • Luís, P. B. M., Ruiter, J. P. N., Ijlst, L., et al. (2011). Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metabolism and Disposition, 39, 1155–1160.

    Article  PubMed  PubMed Central  Google Scholar 

  • McTernan, P. G., Harte, A. L., Anderson, L. A., et al. (2002). Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro. Diabetes, 51, 1493–1498.

    Article  CAS  PubMed  Google Scholar 

  • Nägele, H., Gebhardt, A., Niendorf, A., Kroschinski, J., & Zeller, W. (1997). LDL receptor activity in human leukocyte subtypes: regulation by insulin. Clinical Biochemistry, 30, 531–538.

    Article  PubMed  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotná, R., De Vito, P., Currado, L., Luly, P., & Baldini, P. M. (2003). Involvement of phospholipids in the mechanism of insulin action in HEPG2 cells. Physiological Research, 52, 447–454.

    PubMed  Google Scholar 

  • Ogita, K., Ai, M., Tanaka, A., Ito, Y., Hirano, T., Yoshino, G., et al. (2008). Serum concentration of small dense low-density lipoprotein-cholesterol during oral glucose tolerance test and oral fat tolerance test. Clinica Chimica Acta, 387, 36–41.

    Article  CAS  Google Scholar 

  • Ordovas, J. M., & Shen, J. (2008). Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. Journal of Periodontology, 79, 1508–1513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannacciulli, N., Bunt, J. C., Koska, J., Bogardus, C., & Krakoff, J. (2006). Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. The American Journal of Clinical Nutrition, 84, 556–560.

    CAS  PubMed  Google Scholar 

  • Pellis, L., van Erk, M. J., van Ommen, B., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics, 8, 347–359.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

  • Ramos-Roman, M. A., Sweetman, L., Valdez, M. J., & Parks, E. J. (2012). Postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in overweight and obesity. Metabolism, 61, 202–212.

    Article  CAS  PubMed  Google Scholar 

  • Ranganath, L. R. (2008). The entero-insular axis: implications for human metabolism. Clinical Chemistry and Laboratory Medicine, 46, 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Rathmann, W., Strassburger, K., Heier, M., Holle, R., Thorand, B., Giani, G., et al. (2009). Incidence of Type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study. Diabetic Medicine, 26, 1212–1219.

    Article  CAS  PubMed  Google Scholar 

  • Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. Metabolomics, 8, 133–142.

    Article  Google Scholar 

  • Ruiz-Grande, C., Alarcón, C., Mérida, E., & Valverde, I. (1992). Lipolytic action of glucagon-like peptides in isolated rat adipocytes. Peptides, 13, 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Sancho, V., Trigo, M. V., González, N., Valverde, I., Malaisse, W. J., & Villanueva-Peñacarrillo, M. L. (2005). Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. Journal of Molecular Endocrinology, 35(1), 27–38.

    Article  CAS  PubMed  Google Scholar 

  • Seghieri, M., Rebelos, E., Gastaldelli, A., et al. (2013). Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia, 56, 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Shaham, O., Wei, R., Wang, T. J., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4, 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Skurk, T., Rubio-Aliaga, I., Stamfort, A., Hauner, H., & Daniel, H. (2011). New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. Metabolomics, 7, 388–399.

    Article  CAS  Google Scholar 

  • Standaert, M. L., Avignon, A., Yamada, K., Bandyopadhyay, G., & Farese, R. V. (1996a). The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. The Biochemical Journal, 313, 1039–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standaert, M. L., Bandyopadhyay, G., Zhou, X., Galloway, L., & Farese, R. V. (1996b). Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes. Endocrinology, 137, 3014–3020.

    CAS  PubMed  Google Scholar 

  • Suhre, K., Shin, S.-Y., Petersen, A.-K., et al. (2011). Human metabolic individuality in biomedical and pharmaceutical research. Nature, 477, 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Svegliati-Baroni, G., Saccomanno, S., Rychlicki, C., et al. (2011). Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver International, 31, 1285–1297.

    Article  CAS  PubMed  Google Scholar 

  • Tan, G. D., Neville, M. J., Liverani, E., et al. (2006). The in vivo effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. Diabetologia, 49, 158–168.

    Article  CAS  PubMed  Google Scholar 

  • Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., et al. (2009). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nature Genetics, 41, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Timper, K., Grisouard, J., Sauter, N. S., et al. (2013). Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. American Journal of Physiology, Endocrinology and Metabolism, 304, E1–E13.

    Article  CAS  PubMed  Google Scholar 

  • Van Ommen, B., Keijer, J., Heil, S. G., & Kaput, J. (2009). Challenging homeostasis to define biomarkers for nutrition related health. Molecular Nutrition & Food Research, 53, 795–804.

    Article  Google Scholar 

  • Vendrell, J., El Bekay, R., Peral, B., et al. (2011). Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology, 152, 4072–4079.

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Peñacarrillo, M. L., Márquez, L., González, N., Díaz-Miguel, M., & Valverde, I. (2001). Effect of GLP-1 on lipid metabolism in human adipocytes. Hormone and Metabolic Research, 33, 73–77.

    Article  PubMed  Google Scholar 

  • Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. The American Journal of Clinical Nutrition, 84, 531–539.

    CAS  PubMed  Google Scholar 

  • Walters, S. J. (2004). Sample size and power estimation for studies with health related quality of life outcomes: A comparison of four methods using the SF-36. Health and Quality of Life Outcomes, 2, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Feng, R., Sun, D., Li, Y., Bi, X., & Sun, C. (2011). Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS). Journal of Chromatography, 879, 2871–2876.

    CAS  PubMed  Google Scholar 

  • Wareham, N. J., Young, E. H., & Loos, R. J. F. (2008). Epidemiological study designs to investigate gene-behavior interactions in the context of human obesity. Obesity, 16(Suppl 3), S66–S71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weickert, M. O., Loeffelholz, C., Roden, V. M., et al. (2007). A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. American Journal of Physiology, Endocrinology and Metabolism, 293, E1078–E1084.

    Article  CAS  PubMed  Google Scholar 

  • Westphal, S., Orth, M., Ambrosch, A., Osmundsen, K., & Luley, C. (2000). Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. The American Journal of Clinical Nutrition, 71, 914–920.

    CAS  PubMed  Google Scholar 

  • Willer, C. J., Speliotes, E. K., Loos, R. J., et al. (2009). Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nature Genetics, 41, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q., Saunders, R. A., Szkudlarek-Mikho, M., de la Serna, I., & Chin, K.-V. (2010). The obesity-associated Fto gene is a transcriptional coactivator. Biochemical and Biophysical Research Communications, 401, 390–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würtz, P., Mäkinen, V.-P., Soininen, P., et al. (2012). Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes, 61, 1372–1380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wybranska, I., Malczewska-Malec, M., Partyka, L., et al. (2007). Evaluation of genetic predisposition to insulin resistance by nutrient-induced insulin output ratio (NIOR). Clinical Chemistry and Laboratory Medicine, 45, 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Peter, A., Fritsche, J., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American journal of physiology, Endocrinology and metabolism, 296, E384–E393.

    Article  CAS  PubMed  Google Scholar 

  • Zivkovic, A. M., Wiest, M. M., Nguyen, U., Nording, M. L., Watkins, S. M., & German, J. B. (2009). Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics, 5, 209–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zukunft, S., Sorgenfrei, M., Prehn, C., Möller, G., & Adamski, J. (2013). Targeted Metabolomics of Dried Blood Spot Extracts. Chromatographia. doi:10.1007/s001090000086.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Else Kroener-Fresenius Foundation, Bad Homburg v. d. H, Germany, the grant Virtual Institute ‘Molecular basis of glucose regulation and type 2 diabetes’ received from the Helmholtz Zentrum München, Neuherberg, Germany, the grant Clinical Cooperation Group ‘Nutrigenomics and type 2 diabetes’ received from the Helmholtz Zentrum München, Neuherberg, Germany, the Technische Universität München, Freising-Weihenstephan, and by funding from the German Federal Ministry for Education and Research (BMBF) to the German Center for Diabetes Research (DZD e. V.). WRM is funded by BMBF Grant no. 03IS2061B (project Gani_Med). KS is supported by ‘Biomedical Research Program’ funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation. The KORA study group consists of A. Peters (speaker), R. Leidl, R. Holle, J. Heinrich, C. Meisinger, C. Strauch, and their coworkers, who are responsible for the design and conduct of the KORA studies. We gratefully acknowledge the contribution of all members of field staffs conducting the KORA study and thank all study probands participating in the study. The KORA research platform studies were initiated and financed by the Helmholtz Zentrum München – German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Science, Research and Technology and by the State of Bavaria. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank Julia Scarpa, Katharina Sckell and Arsin Sabunchi for metabolomics measurement performed at the Helmholtz Zentrum München, Genome Analysis Center, Metabolomics Core Facility, Neuherberg, Germany, and Jan Krumsiek for advice concerning weighted enrichment analysis.

Conflict of interest

All authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Laumen.

Additional information

Simone Wahl, Susanne Krug, and Cornelia Then have contributed equally to this work.

Electronic supplementary material

Fig. S1 Time course of challenge responses of clinical traits. (a) and (b) Response to intravenous challenges, (c) to (g) response to oral challenges. Mean and standard deviation of plasma concentrations at the different time points are shown, connected through lines. Solid red lines, significant concentration changes as identified in LMEs, after correction for multiple testing. Dotted black lines, not significant. EH clamp euglycemic hyperinsulinemic clamp, HFHC meal high-fat high-carbohydrate meal, IVGTT intravenous glucose tolerance test, OGTT oral glucose tolerance test, OLTT oral lipid tolerance test

Fig. S2 K-means clustering of challenge response profiles, including only subjects having taken part in all challenge tests (n = 17 FTO risk allele carriers, n = 12 non-carriers). LMEs and clustering were performed as described for the full data set (Sect. 2), resulting in similar effects and a similar clustering solution. Mean scaled concentrations of each metabolite at the different time points are shown, connected through lines. Solid red lines, significant concentration changes as identified in LMEs, after correction for multiple testing. Dotted black lines, not significant. Metabolites belonging to the respective cluster are specified on the right-hand side of the graphs, the number of metabolites in each cluster is included in the graph titles. c45, 45 min after clamp steady state; EH clamp euglycemic hyperinsulinemic clamp, HFHC meal high-fat high-carbohydrate meal, IVGTT intravenous glucose tolerance test, OGTT oral glucose tolerance test, OLTT oral lipid tolerance test

Fig. S3. Time courses of challenge response for different biological metabolite groups within cluster 1, after including only subjects having taken part in all challenge tests (n = 17 FTO risk allele carriers, n = 12 non-carriers). Mean scaled concentrations of each metabolite at the different time points are shown, connected through lines. Solid red lines, significant concentration changes as identified in LMEs, after correction for multiple testing. Dotted black lines, not significant. Metabolites belonging to the respective biological group are specified on the right-hand side of the graphs, the number of metabolites in each group is included in the graph titles. c45, 45 min after clamp steady state; EH clamp euglycemic hyperinsulinemic clamp, HFHC meal high-fat high-carbohydrate meal, IVGTT intravenous glucose tolerance test, OGTT oral glucose tolerance test, OLTT oral lipid tolerance test

Table S1 Composition of the oral challenges according to manufacturers’ information. HFHC meal high-fat high-carbohydrate meal, OGTT oral glucose tolerance test, OLTT oral lipid tolerance testTable S2 Mean (sd) metabolite concentrations at different time points during the challenges and coefficients (95 % confidence intervals) and p-values for metabolite changes between time points as derived from LMEs. p-Values from all tests were subjected to correction for multiple testing, stars (*) indicate significant results after correction. EH clamp euglycemic hyperinsulinemic clamp, HFHC meal high-fat high-carbohydrate meal, IVGTT intravenous glucose tolerance test, OGTT oral glucose tolerance test, OLTT oral lipid tolerance test, ss steady state

Table S3 Mean (sd) concentrations of biochemical parameters at different time points during the challenges and coefficients (95 % confidence intervals) and p-values for concentration changes between time points as derived from LMEs. p-Values from all tests were subjected to correction for multiple testing, stars (*) indicate significant results after correction. EH clamp euglycemic hyperinsulinemic clamp, HFHC meal high-fat high-carbohydrate meal, IVGTT intravenous glucose tolerance test, OGTT oral glucose tolerance test, OLTT oral lipid tolerance test, ss steady state

Table S4 Metabolites with nominal FTO effect on 1-h OGTT response, as determined by LMEs. Mean metabolite concentrations are shown for FTO risk allele carriers and non-carriers at baseline and 1 h after the OGTTBelow is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 67 kb)

Supplementary material 2 (PDF 293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahl, S., Krug, S., Then, C. et al. Comparative analysis of plasma metabolomics response to metabolic challenge tests in healthy subjects and influence of the FTO obesity risk allele. Metabolomics 10, 386–401 (2014). https://doi.org/10.1007/s11306-013-0586-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0586-x

Keywords

Navigation