, Volume 10, Issue 3, pp 524–535 | Cite as

UPLC-MS profiling of low molecular weight phlorotannin polymers in Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis

  • Michelle S. Tierney
  • Anna Soler-Vila
  • Dilip K. Rai
  • Anna K. Croft
  • Nigel P. BruntonEmail author
  • Thomas J. Smyth
Original Article


Phlorotannins are a group of complex polymers, found in particular brown macroalgae, composed solely of the monomer phloroglucinol (1,3,5-trihydroxybenzene). Their structural complexity arises from the number of possible linkage positions between each monomer unit. This study aimed to profile the phlorotannin metabolite composition and the complexity of isomerisation present in brown macroalgae Ascophyllum nodosum, Pelvetia canaliculata and Fucus spiralis using UPLC-MS utilising a tandem quadrupole mass spectrometer. Phlorotannin-enriched fractions from water and aqueous ethanol extracts were analysed by UPLC-MS performed in multiple reaction monitoring mode to detect molecular ions consistent with the molecular weights of phlorotannins. Ascophyllum nodosum and P. canaliculata appeared to contain predominantly larger phlorotannins (degree of polymerisation (DP) of 6–13 monomers) compared to F. spiralis (DP of 4–6 monomers). This is the first report observing the complex chromatographic separation and metabolomic profiling of low molecular weight phlorotannins consisting of more than ten monomers. Extracted ion chromatograms, for each of the MRM transitions, for each species were analysed to profile the level of isomerisation for specific molecular weights of phlorotannins between 3 and 16 monomers. The level of phlorotannin isomerisation within the extracts of the individual macroalgal species differed to some degree, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. A similar UPLC-MS/MS separation procedure, as outlined in this study, may be used in the future as a means of screening the metabolite profile of macroalgal extracts, therefore, allowing extract consistency to be monitored for standardisation purposes.


Phlorotannins UPLC-MS/MS profiling Brown macroalgae Polymers 



Michelle Tierney was in receipt of Walsh Fellowship funding from Teagasc the Irish Agriculture and Food Development Authority for the duration of this work and this funding is gratefully acknowledged. This work has also been supported by the Marine Functional Foods Research Initiative (NutraMara project) which is a programme for marine based functional food development. This project (Grant-Aid Agreement No. MFFRI/07/01) is carried out under the Sea Change Strategy with the support of the Marine Institute and the Department of Agriculture, Food and the Marine, funded under the National Development Plan 2007–2013.

Supplementary material

11306_2013_584_MOESM1_ESM.pptx (204 kb)
Supplementary material 1 (PPTX 203 kb)
11306_2013_584_MOESM2_ESM.pptx (265 kb)
Supplementary material 2 (PPTX 264 kb)
11306_2013_584_MOESM3_ESM.pptx (399 kb)
Supplementary material 3 (PPTX 398 kb)
11306_2013_584_MOESM4_ESM.pptx (498 kb)
Supplementary material 4 (PPTX 498 kb)
11306_2013_584_MOESM5_ESM.pptx (349 kb)
Supplementary material 5 (PPTX 349 kb)
11306_2013_584_MOESM6_ESM.pptx (259 kb)
Supplementary material 6 (PPTX 259 kb)
11306_2013_584_MOESM7_ESM.docx (66 kb)
Supplementary material 7 (DOCX 76 kb)


  1. Bell, D. S., & Jones, A. D. (2005). Solute attributes and molecular interactions contributing to “U-shape” retention on a fluorinated high-performance liquid chromatography stationary phase. Journal of Chromatography A, 1073, 99–109.CrossRefPubMedGoogle Scholar
  2. Blahová, E., Jandera, P., Cacciola, F., & Mondello, L. (2006). Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-, polyethyleneglycol-, and pentafluorophenylpropyl-silica columns. Journal of Separation Science, 29, 555–566.CrossRefPubMedGoogle Scholar
  3. Boettcher, A. A., & Targett, N. M. (1993). Role of polyphenolic molecular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology, 74, 891–903.CrossRefGoogle Scholar
  4. Colliec, S., Boisson-vidal, C., & Jozefonvicz, J. (1994). A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata. Phytochemistry (Elsevier), 35, 697–700.CrossRefGoogle Scholar
  5. Eom, S.-H., Lee, S.-H., Yoon, N.-Y., et al. (2012). α-Glucosidase- and α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. Journal of the Science of Food and Agriculture, 92, 2084–2090.CrossRefPubMedGoogle Scholar
  6. Ferreres, F., Lopes, G., Gil-Izquierdo, A., et al. (2012). Phlorotannin extracts from Fucales characterized by HPLC-DAD-ESI-MSn: Approaches to hyaluronidase inhibitory capacity and antioxidant properties. Marine Drugs, 10, 2766–2781.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Glombitza, K. W., & Klapperich, K. (1985). Antibiotics from algae. XXXIV. Cleavage of the high-molecular-weight methylated phlorotannin fraction from the brown alga Pelvetia canaliculata. Botanica Marina, XXVIII, 139–144.Google Scholar
  8. Grebenstein, N., & Frank, J. (2012). Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. Journal of Chromatography A, 1243, 39–46.CrossRefPubMedGoogle Scholar
  9. Kang, S.-M., Heo, S.-J., Kim, K.-N., Lee, S.-H., & Jeon, Y.-J. (2012). Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. Journal of Functional Foods, 4, 158–166.CrossRefGoogle Scholar
  10. Koivikko, R., Loponen, J., Pihlaja, K., & Jormalainen, V. (2007). High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus Vesiculosus. Phytochemical Analysis, 18, 326–332.CrossRefPubMedGoogle Scholar
  11. Li, Y., Qian, Z.-J., Kim, M.-M., & Kim, S.-K. (2011). Cytotoxic activities of phlorethol and fucophlorethol derivatives isolated from Laminariaceae Ecklonia cava. Journal of Food Biochemistry, 35, 357–369.CrossRefGoogle Scholar
  12. Marais, M.-F., & Joseleau, J.-P. (2001). A fucoidan fraction from Ascophyllum nodosum. Carbohydrate Research, 336, 155–159.CrossRefPubMedGoogle Scholar
  13. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., & Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy, 50, 889–890.CrossRefPubMedGoogle Scholar
  14. Novakova, L., Matysova, L., & Solich, P. (2006). Advantages of application of UPLC in pharmaceutical analysis. Talanta, 68, 908–918.CrossRefPubMedGoogle Scholar
  15. Núñeza, O., Gallart-Ayalaa, H., Martinsb, C. P. B., & Luccic, P. (2012). New trends in fast liquid chromatography for food and environmental analysis. Journal of Chromatography A, 1228, 298–323.CrossRefGoogle Scholar
  16. Nwosu, F., Morris, J., Lund, V. A., Stewart, D., Ross, H. A., & McDougall, G. J. (2010). Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chemistry, 126, 1006–1012.CrossRefGoogle Scholar
  17. Pavia, H., Cervin, G., Lindgren, A., & Aberg, P. (1997). Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Marine Ecology Progress Series, 157, 139–146.CrossRefGoogle Scholar
  18. Ragan, M. A., & Glombitza, K. W. (1986). Phlorotannins, brown algal polyphenols. Progress in Phycological Research, 4, 129–241.Google Scholar
  19. Shibata, T., Ishimaru, K., Kawaguchi, S., Yoshikawa, H., & Hama, Y. (2008). Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. Journal of Applied Phycology, 20, 705–711.CrossRefGoogle Scholar
  20. Steevensz, A. J., MacKinnon, S. L., Hankinson, R., et al. (2012). Profiling phlorotannins in brown macroalgae by liquid chromatography–high resolution mass spectrometry. Phytochemical Analysis, 3, 547–553.CrossRefGoogle Scholar
  21. Stern, J. L., Hagerman, A. E., Steinberg, P. D., & Mason, P. K. (1996). Phlorotannin-protein interactions. Journal of Chemical Ecology, 22, 1877–1899.CrossRefPubMedGoogle Scholar
  22. Targett, N. M., Boettcher, A. A., Targett, T. E., & Vrolijk, N. H. (1995). Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia, 103, 170–179.CrossRefGoogle Scholar
  23. Tierney, M. S., Croft, A. K., & Hayes, M. (2010). A review of antihypertensive and antioxidant activities in macroalgae. Botanica Marina, 53, 387–408.CrossRefGoogle Scholar
  24. Tierney, M. S., Smyth, T. J., Hayes, M., Soler-Vila, A., Croft, A. K., & Brunton, N. (2013a). Influence of pressurised liquid extraction and solid-liquid extraction on the phenolic content and antioxidant activities of Irish macroalgae. International Journal of Food Science and Technology, 48, 860–869.CrossRefGoogle Scholar
  25. Tierney, M. S., Smyth, T. J., Rai, D. K., Soler-Vila, A., Croft, A. K., & Brunton, N. (2013b). Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chemistry, 139, 753–761.CrossRefPubMedGoogle Scholar
  26. Wang, T., Jónsdóttir, R., Liu, H., et al. (2012). Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 60, 5874–5883.CrossRefPubMedGoogle Scholar
  27. Wijesinghe, W. A. J. P., Ko, S.-C., & Jeon, Y.-J. (2011). Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutrition Research and Practice, 5, 93–100.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michelle S. Tierney
    • 1
    • 2
  • Anna Soler-Vila
    • 3
  • Dilip K. Rai
    • 1
  • Anna K. Croft
    • 2
    • 5
  • Nigel P. Brunton
    • 4
    Email author
  • Thomas J. Smyth
    • 1
  1. 1.Food Biosciences DepartmentTeagasc Food Research CentreDublin 15Ireland
  2. 2.School of ChemistryUniversity of Wales BangorBangorUK
  3. 3.Irish Seaweed Research Group, Ryan Institute (Environmental Marine and Energy Research)NUI GalwayGalwayIreland
  4. 4.School of Agriculture & Food Science, Science Centre SouthUniversity College DublinDublin 4Ireland
  5. 5.Biorenewables and Bioprocessing Group, Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamUK

Personalised recommendations