Skip to main content

Advertisement

Log in

NIPSNAP1 deficient mice exhibit altered liver amino acid, lipid and nucleotide metabolism

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

4-Nitrophenyl phosphatase domain and non-neuronal SNAP25-like protein homolog1 (NIPSNAP1) is an evolutionarily conserved protein found in a variety of species ranging from C. elegans to human. NIPSNAP1 protein is localized in mitochondria and is highly expressed in liver, brain and kidney. The molecular and cellular roles of NIPSNAP1 are still unknown. To gain insights into the function of NIPSNAP1, we generated a mouse model with a disruption of Nipsnap1 gene and performed metabolomic analysis on their liver tissues. Liver samples from 13 to 15 month old NIPSNAP1 deficient (n = 7) and wild-type (n = 8) mice were extracted and processed for analysis using liquid/gas chromatography followed by mass spectrometry (LC/MS and GC/MS). We examined a total of 291 compounds in liver samples and found 45 compounds whose levels were significantly altered (p < 0.05, Welch’s t test) in NIPSNAP1 deficient mice compared to controls. These compounds were associated with a variety of processes, including metabolism of nucleotides, amino acids and lipids. In addition, we found a significant reduction in reduced glutathione (GSH) (0.63-fold change, p < 0.05) and elevation in cysteine–glutathione disulfide (2.77-fold change, p < 0.05). Our results suggest that NIPSNAP1 deficiency affects multiple processes in intermediate metabolism and results in oxidative stress in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. E., & Luo, J. L. (1998). Glutathione therapy: From prodrugs to genes. Seminars in Liver Disease, 18, 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Brizard, J. P., Ramos, J., Robert, A., et al. (2009). Identification of proteomic changes during human liver development by 2D-DIGE and mass spectrometry. Journal of Hepatology, 51, 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Brown, E. T., Umino, Y., Loi, T., Solessio, E., & Barlow, R. (2005). Anesthesia can cause sustained hyperglycemia in C57/BL6J mice. Visual Neuroscience, 22, 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Cahoy, J. D., Emery, B., Kaushal, A., et al. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function. Journal of Neuroscience, 28, 264–278.

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin, M. C., Crawford, F., Houlden, H., et al. (1991). Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature, 353, 844–846.

    Article  CAS  PubMed  Google Scholar 

  • Chiba, T., Yokosuka, O., Arai, M., et al. (2004). Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. Journal of Hepatology, 41, 436–445.

    Article  CAS  PubMed  Google Scholar 

  • Dou, L., Jourde-Chiche, N., Faure, V., et al. (2007). The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. Journal of Thrombosis and Haemostasis, 5, 1302–1308.

    Article  CAS  PubMed  Google Scholar 

  • Fujii, H., Nakai, K., & Fukagawa, M. (2011). Role of oxidative stress and indoxyl sulfate in progression of cardiovascular disease in chronic kidney disease. Therapeutic Apheresis and Dialysis, 15, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., Mullan, M., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature, 349, 704–706.

    Article  CAS  PubMed  Google Scholar 

  • Godin, D. V., & Wohaieb, S. A. (1988). Nutritional deficiency, starvation, and tissue antioxidant status. Free Radical Biology and Medicine, 5, 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Griffith, O. W. (1999). Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radical Biology and Medicine, 27, 922–935.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, J. D., & McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 31, 273–300.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. M., Nautiyal, M., Wynn, R. M., Mobley, J. A., Chuang, D. T., & Hutson, S. M. (2009). Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm). Journal of Biological Chemistry, 285, 265–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, D. P. (2006). Redefining oxidative stress. Antioxidants and Redox Signaling, 8, 1865–1879.

    Article  CAS  PubMed  Google Scholar 

  • Kalhan, S. C., Guo, L., Edmison, J., et al. (2011). Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism, 60, 404–413.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Burklen, T., Yuan, X., et al. (2006). Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Molecular and Cellular Neuroscience, 31, 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S. C. (1999). Regulation of hepatic glutathione synthesis: Current concepts and controversies. The FASEB Journal, 13, 1169–1183.

    CAS  PubMed  Google Scholar 

  • Martensson, J., Jain, A., Stole, E., Frayer, W., Auld, P. A., & Meister, A. (1991). Inhibition of glutathione synthesis in the newborn rat: A model for endogenously produced oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 88, 9360–9364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrell, J., Farlow, M., Ghetti, B., & Benson, M. D. (1991). A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science, 254, 97–99.

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal, M., Sweatt, A. J., MacKenzie, J. A., et al. (2010). Neuronal localization of the mitochondrial protein NIPSNAP1 in rat nervous system. European Journal of Neuroscience, 32, 560–569.

    Article  PubMed  Google Scholar 

  • Okuda-Ashitaka, E., Minami, T., Tsubouchi, S., et al. (2012). Identification of NIPSNAP1 as a nocistatin-interacting protein involving pain transmission. Journal of Biological Chemistry, 287, 10403–10413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Torres, A., Barcelo-Batllori, S., Fernandez-Vizarra, E., et al. (2012). Proteomics and gene expression analyses of mitochondria from squalene-treated apoE-deficient mice identify short-chain specific acyl-CoA dehydrogenase changes associated with fatty liver amelioration. Journal of Proteomics, 75, 2563–2575.

    Article  CAS  PubMed  Google Scholar 

  • Ravindranath, V., & Reed, D. J. (1990). Glutathione depletion and formation of glutathione-protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Biochemical and Biophysical Research Communications, 169, 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, K., Takeuchi, M., Oda, Y., et al. (2002). Identification of activity-regulated proteins in the postsynaptic density fraction. Genes to Cells, 7, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Siess, E. A., Brocks, D. G., & Wieland, O. H. (1978). Distribution of metabolites between the cytosolic and mitochondrial compartments of hepatocytes isolated from fed rats. Hoppe Seylers Z Physiological Chemistry, 359, 785–798.

    Article  CAS  Google Scholar 

  • Soga, T., Baran, R., Suematsu, M., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. Journal of Biological Chemistry, 281, 16768–16776.

    Article  CAS  PubMed  Google Scholar 

  • Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America, 100, 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surendran, S., Tyring, S. K., & Matalon, R. (2005). Expression of calpastatin, minopontin, NIPSNAP1, rabaptin-5 and neuronatin in the phenylketonuria (PKU) mouse brain: possible role on cognitive defect seen in PKU. Neurochemistry International, 46, 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Takata, A., Kakiuchi, C., Ishiwata, M., Kanba, S., & Kato, T. (2010). Behavioral and gene expression analyses in heterozygous XBP1 knockout mice: possible contribution of chromosome 11qA1 locus to prepulse inhibition. Neuroscience Research, 68, 250–255.

    Article  CAS  PubMed  Google Scholar 

  • Tummala, H., Li, X., & Homayouni, R. (2010). Interaction of a novel mitochondrial protein, 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1), with the amyloid precursor protein family. European Journal of Neuroscience, 31, 1926–1934.

    Article  PubMed  Google Scholar 

  • Vaziri, N. D., Wang, X. Q., Oveisi, F., & Rad, B. (2000). Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension, 36, 142–146.

    Article  CAS  PubMed  Google Scholar 

  • Welch, K. D., Reilly, T. P., Bourdi, M., et al. (2006). Genomic identification of potential risk factors during acetaminophen-induced liver disease in susceptible and resistant strains of mice. Chemical Research in Toxicology, 19, 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Withers, P. C. (1998). Urea: diverse functions of a ‘waste’ product. Clinical and Experimental Pharmacology and Physiology, 25, 722–727.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Bass and M. Perez for technical assistance and mouse colony management. This work was supported by Assisi Foundation of Memphis and the University of Memphis FedEx Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Homayouni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 1963 kb)

Supplementary material 2 (XLSX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoshal, S., Jones, L. & Homayouni, R. NIPSNAP1 deficient mice exhibit altered liver amino acid, lipid and nucleotide metabolism. Metabolomics 10, 250–258 (2014). https://doi.org/10.1007/s11306-013-0583-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0583-0

Keywords

Navigation