Skip to main content

Advertisement

Log in

Human metabolic correlates of body mass index

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A high body mass index (BMI) is a major risk factor for several chronic diseases, but the biology underlying these associations is not well-understood. Dyslipidemia, inflammation, and elevated levels of growth factors and sex steroid hormones explain some of the increased disease risk, but other metabolic factors not yet identified may also play a role. In order to discover novel metabolic biomarkers of BMI, we used non-targeted metabolomics to assay 317 metabolites in blood samples from 947 participants and examined the cross-sectional associations between metabolite levels and BMI. Participants were from three studies in the United States and China. Height, weight, and potential confounders were ascertained by questionnaire (US studies) or direct measurement (Chinese study). Metabolite levels were measured using liquid-phase chromatography and gas chromatography coupled with mass spectrometry. We evaluated study-specific associations using linear regression, adjusted for age, gender, and smoking, and we estimated combined associations using random effects meta-analysis. The meta-analysis revealed 37 metabolites significantly associated with BMI, including 19 lipids, 12 amino acids, and 6 others, at the Bonferroni significance threshold (P < 0.00016). Eighteen of these associations had not been previously reported, including histidine, an amino acid neurotransmitter, and butyrylcarnitine, a lipid marker of whole-body fatty acid oxidation. Heterogeneity by study was minimal (all P heterogeneity > 0.05). In total, 110 metabolites were associated with BMI at the P < 0.05 level. These findings establish a baseline for the BMI metabolome, and suggest new targets for researchers attempting to clarify mechanistic links between BMI and disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chan, J. M., Rimm, E. B., Colditz, G. A., Stampfer, M. J., & Willett, W. C. (1994). Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care, 17(9), 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S., Rhee, E. P., Larson, M. G., et al. (2012). Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 125(18), 2222–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177–188.

    Article  CAS  PubMed  Google Scholar 

  • Evans, A. M., Dehaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81(16), 6656–6667.

    Article  CAS  PubMed  Google Scholar 

  • Felig, P., Marliss, E., & Cahill, G. F, Jr. (1969). Plasma amino acid levels and insulin secretion in obesity. New England Journal of Medicine, 281(15), 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Field, A. P. (2001). Meta-analysis of correlation coefficients: a Monte Carol comparison of fixed- and random-effects methods. Psychological Methods, 6(2), 161–180.

    Article  CAS  PubMed  Google Scholar 

  • Floegel, A., Stefan, N., Yu, Z., et al. (2012). Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach. Diabetes, 62(2), 639–648.

    Article  PubMed  Google Scholar 

  • Forlani, G., Vannini, P., Marchesini, G., et al. (1984). Insulin-dependent metabolism of branched-chain amino acids in obesity. Metabolism, 33(2), 147–150.

    Article  CAS  PubMed  Google Scholar 

  • Gall, W. E., Beebe, K., Lawton, K. A., et al. (2010). alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 5(5), e10883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudet, M. M., Falk, R. T., Stevens, R. D., et al. (2012). Analysis of serum metabolic profiles in women with endometrial cancer and controls in a population-based case-control study. Journal of Clinical Endocrinology and Metabolism, 97(9), 3216–3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, H. L., Sergeeva, O. A., & Selbach, O. (2008). Histamine in the nervous system. Physiological Reviews, 88(3), 1183–1241.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, P. M., & Kenny, P. J. (2010). Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nature Neuroscience, 13(5), 635–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurj, A. L., Wen, W., Xiang, Y. B., et al. (2007). Reproducibility and validity of the Shanghai Men’s Health Study physical activity questionnaire. American Journal of Epidemiology, 165(10), 1124–1133.

    Article  PubMed  Google Scholar 

  • McGill, J. B., Cole, T. G., Nowatzke, W., et al. (2004). Circulating 1,5-anhydroglucitol levels in adult patients with diabetes reflect longitudinal changes of glycemia: a U.S. trial of the GlycoMark assay. Diabetes Care, 27(8), 1859–1865.

    Article  CAS  PubMed  Google Scholar 

  • Miettinen, T. A., Tilvis, R. S., & Kesaniemi, Y. A. (1990). Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. American Journal of Epidemiology, 131(1), 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery, A. J., McTavish, S. F., Cowen, P. J., & Grasby, P. M. (2003). Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C] raclopride PET study. American Journal of Psychiatry, 160(10), 1887–1889.

    Article  PubMed  Google Scholar 

  • National Cancer Institute. Provocative Questions Project. http://provocativequestions.nci.nih.gov/rfa. Accessed March 11, 2013.

  • Newgard, C. B. (2012). Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metabolism, 15(5), 606–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogata, H., Goto, S., Sato, K., et al. (1999). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 27(1), 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paramsothy, P., Knopp, R. H., Kahn, S. E., et al. (2011). Plasma sterol evidence for decreased absorption and increased synthesis of cholesterol in insulin resistance and obesity. American Journal of Clinical Nutrition, 94(5), 1182–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihlajamaki, J., Gylling, H., Miettinen, T. A., & Laakso, M. (2004). Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. Journal of Lipid Research, 45(3), 507–512.

    Article  PubMed  Google Scholar 

  • Pitkanen, O. M., Vanhanen, H., & Pitkanen, E. (1999). Metabolic syndrome is associated with changes in d-mannose metabolism. Scandinavian Journal of Clinical and Laboratory Investigation, 59(8), 607–612.

    Article  CAS  PubMed  Google Scholar 

  • Poirier, P., Giles, T. D., Bray, G. A., et al. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898–918.

    Article  PubMed  Google Scholar 

  • Prorok, P. C., Andriole, G. L., Bresalier, R. S., et al. (2000). Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Controlled Clinical Trials, 21(6 Suppl), 273S–309S.

    Article  CAS  PubMed  Google Scholar 

  • Puhakainen, I., Koivisto, V. A., & Yki-Jarvinen, H. (1992). Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 75(3), 789–794.

    CAS  PubMed  Google Scholar 

  • Renehan, A. G., Tyson, M., Egger, M., Heller, R. F., & Zwahlen, M. (2008). Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet, 371(9612), 569–578.

    Article  PubMed  Google Scholar 

  • Roberts, D. L., Dive, C., & Renehan, A. G. (2010). Biological mechanisms linking obesity and cancer risk: new perspectives. Annual Review of Medicine, 61, 301–316.

    Article  CAS  PubMed  Google Scholar 

  • Sampson, J. N., Boca, S. M., Shu, X. O., et al. (2013). Metabolomics in Epidemiology: Sources of Variability in Metabolite Measurements and Implications. Cancer Epidemiol Biomarkers Prev, 22(4), 631–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, R., Chow, W. H., Kulldorff, M., et al. (1999). Well-done, grilled red meat increases the risk of colorectal adenomas. Cancer Research, 59(17), 4320–4324.

    CAS  PubMed  Google Scholar 

  • Sone, H., Shimano, H., Ebinuma, H., et al. (2003). Physiological changes in circulating mannose levels in normal, glucose-intolerant, and diabetic subjects. Metabolism, 52(8), 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., van Dam, R. M., Spiegelman, D., et al. (2010). Comparison of dual-energy x-ray absorptiometric and anthropometric measures of adiposity in relation to adiposity-related biologic factors. American Journal of Epidemiology, 172(12), 1442–1454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takkouche, B., Cadarso-Suarez, C., & Spiegelman, D. (1999). Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis. American Journal of Epidemiology, 150(2), 206–215.

    Article  CAS  PubMed  Google Scholar 

  • Trayhurn, P., Wang, B., & Wood, I. S. (2008). Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? British Journal of Nutrition, 100(2), 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay, F., Brule, S., Hee, U. S., et al. (2007). Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A, 104(35), 14056–14061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Maldegem, B. T., Duran, M., Wanders, R. J., et al. (2006). Clinical, biochemical, and genetic heterogeneity in short-chain acyl-coenzyme A dehydrogenase deficiency. JAMA, 296(8), 943–952.

    Article  PubMed  Google Scholar 

  • Venables, M. C., Hulston, C. J., Cox, H. R., & Jeukendrup, A. E. (2008). Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. American Journal of Clinical Nutrition, 87(3), 778–784.

    CAS  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Willett, W. C. (2012). Nutritional epidemiology (3rd ed.). New York: Oxford Univ.

    Book  Google Scholar 

  • Wu, Q., Clark, M. S., & Palmiter, R. D. (2012). Deciphering a neuronal circuit that mediates appetite. Nature, 483(7391), 594–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, W., Chow, W. H., Yang, G., et al. (2005). The Shanghai Women’s Health Study: rationale, study design, and baseline characteristics. American Journal of Epidemiology, 162(11), 1123–1131.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank David P. Check of the Division of Cancer Epidemiology and Genetics of the U.S. National Cancer Institute for preparation of the figures and Nathan Appel, Dominick Parisi, and Adam Risch of Information Management Services for programming support. Finally, we thank the participants for their involvement in our research studies. This work was supported, in part, by the Breast Cancer Research Stamp Fund, awarded through competitive peer review and the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Department of Health and Human Services. The Shanghai Women’s Health Study was supported primarily by R37CA70867 and the Shanghai Men’s Health Study was supported by R01CA082729.

Conflict of interest

The authors have no conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Moore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.C., Matthews, C.E., Sampson, J.N. et al. Human metabolic correlates of body mass index. Metabolomics 10, 259–269 (2014). https://doi.org/10.1007/s11306-013-0574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0574-1

Keywords

Navigation