Skip to main content
Log in

Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Fourier transform infrared spectroscopy was used to characterise highland and lowland populations of Polygonum minus Huds. grown in different controlled environments. A thermal perturbation technique of two-dimensional correlation infrared spectroscopy (2D-IR) correlation spectra was applied to establish differences between the populations. The absorption peaks at 3,480 cm−1 (hydroxyl group), 2,927 cm−1 (methyl group), 1,623 cm−1 (carbonyl group), and 1,068 cm−1 (C–O group) were particularly powerful in separating the populations. These peaks, which indicate the presence of carbohydrate, terpenes, amide and flavonoids were more intense for the highland populations than lowland populations, and increased in environments with a higher temperature. Wavenumbers (1,634, 669 cm−1) and (1,634, 1,555 cm−1) in the 2D-IR correlation spectra provided fingerprint signals to differentiate plants grown at different temperatures. This study demonstrates that IR fingerprinting, which combines mid-IR spectra and 2D-IR correlation spectra, can directly discriminate different populations of P. minus and the effects of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions: A review. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Baharum, S. N., Bunawan, H., Ghani, M. A., Mustapha, W. A. W., & Noor, N. M. (2010). Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules, 15, 7006–7015.

    Article  CAS  PubMed  Google Scholar 

  • Beekes, M., Lasch, P., & Naumann, D. (2007). Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research. Veterinary Microbiology, 123, 305–319.

    Article  CAS  PubMed  Google Scholar 

  • Bunawan, H., Chee, Y. C., Md-Zain, B. M., Baharum, S. N., & Noor, N. M. (2011a). Molecular Systematics of Polygonum minus Huds. based on ITS Sequences. International Journal of Molecular Sciences, 12, 7626–7634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunawan, H., Talip, N., & Noor, N. M. (2011b). Foliar anatomy and micromorphology of Polygonum minus Huds. and their taxonomic implications. Australian Journal of Crop Science, 5(2), 123–127.

    Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianfagna, T. J., Carter, C. D., & Sacalis, J. N. (1992). Temperature and photoperiod influence trichome density and sesquiterpene content of Lycopersicon hirsutum f. hirsutum. Plant Physiology, 100, 1403–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Romero, M., Segura-Carretero, A., & Fernandez-Gutierrez, (2010). Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry, 71, 1848–1864.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, H. (2001). Plant Temperature Stress. doi:10.1038/npg.els.0001320.

    Google Scholar 

  • Huda-Faujan, N., Noriham, A., Norrakiah, A. S., & Babji, A. S. (2007). Antioxidative activities of water extracts of some Malaysian herbs. ASEAN Food Journal, 14(1), 61–68.

    Google Scholar 

  • Ikeda, T., Kanaya, S., Kobayashi, A., Yonetani, T., & Fukusaki, E. (2007). Prediction of Japanese green tea ranking by Fourier transform near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry, 55, 9908–9912.

    Article  CAS  PubMed  Google Scholar 

  • Janas, K. M., Cvikrova, M., Palagiewicz, A., & Eder, J. (2000). Alterations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiology and Biochemistry, 38, 587–593.

    Article  CAS  Google Scholar 

  • Jie, Z., Xiaodong, J., Tianlai, L., & Zaiqiang, Y. (2012). Effect of moderately-high temperature stress on photosynthesis and carbohydrate metabolism in tomato (Lycopersico esculentum L.) leaves. African Journal of Agricultural Research, 7(3), 487–492.

    Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: making sense of the soup. Current Opinion in Microbiology, 7, 296–307.

    Article  CAS  PubMed  Google Scholar 

  • Kemsley, E. K., Belton, P. S., McCann, M. C., Ttofis, S., Wilson, R. H., & Delgadillo, I. (1994). A rapid method for the authentication of vegetable matter using Fourier transform infrared spectroscopy. Food Control, 5, 241–243.

    Article  Google Scholar 

  • Lafta, A. M., & Lorenzen, J. H. (1995). Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology, 109(2), 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. M., Sun, S. Q., Zhou, Q., et al. (2004). Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy, 36, 227–232.

    Article  CAS  Google Scholar 

  • Lyons, J. M. (1973). Chilling injury in plants. Annual Review of Plant Physiology, 24, 445–466.

    Article  CAS  Google Scholar 

  • Martz, F. O., Peltola, R., Julkunen-Tiitto, R., Fontanay, S., & Stark, S. (2009). Effect of latitude and altitude on the terpenoid and soluble phenolic composition of Juniper (juniperus communis) needles and evaluation of their antibacterial activity in the Boreal zone. Journal of Agricultural and Food Chemistry, 57, 9575–9584.

    Article  CAS  PubMed  Google Scholar 

  • Miguel, A. R., Maria, M. R., Rosa, C., Nicolas, C., Juan, M. R., & Luis, R. (2007). Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 113, 244–249.

    Article  Google Scholar 

  • Naghdi-Badi, H., Dastpak, H. A., & Ziai, S. A. (2004). A Review of Psyllium Plant (Plantago ovata Forsk. and Plantago psyllium L.). Journal of Medicinal Plants, 3, 1–13.

    Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Oquist, G. (1983). Effects of low-temperature on photosynthesis. Plant Cell and Environment, 6, 281–300.

    Google Scholar 

  • Pavia, D. L., Lampman, G. M., & Kriz, G. S. (2001). Introduction to spectroscopy (3rd ed.). USA: Thomson Learning.

    Google Scholar 

  • Ridley, H. N. (1967). The Flora of the Malay Peninsula. Ashford: L. Reeve & Co.

    Google Scholar 

  • Rosenfeld, H. J., Aaby, K., & Lea, P. (2002). Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. Journal of the Science of Food and Agriculture, 82(12), 1384–1390.

    Article  CAS  Google Scholar 

  • Roslan, N. D., Yusop, J. M., Baharum, S. N., et al. (2012). flavonoid biosynthesis genes putatively identified in the aromatic plant Polygonum minus via expressed sequences tag (EST) analysis. International Journal of Molecular Sciences, 13, 2692–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said, S. A., Fernandez, C., Greff, S., et al. (2011). Inter-population variability of terpenoid composition in leaves of Pistacia lentiscus L. from Algeria: A chemoecological approach. Molecules, 16(3), 2646–2657.

    Article  CAS  PubMed  Google Scholar 

  • Sharkey, T. D., & Singsaas, E. L. (1995). Why plants emit isoprene. Nature, 374, 769.

    Article  CAS  Google Scholar 

  • Singsaas, E. L., Lerdau, M., Winter, K., & Sharkey, T. D. (1997). Isoprene increases thermotolerance of isoprene-emitting leaves. Plant Physiology, 115, 1413–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, S. Q., Zhou, Q., & Chen, J. B. (2011). Infrared spectroscopy for complex mixtures: application in food and traditional medicine. Beijing: Chemical Industry Press.

    Google Scholar 

  • Suzuki, M., Kusano, M., Takahashi, H., et al. (2010). Rice-Arabidopsis FOX line screening with FT-NIR-based fingerprinting for GC-TOF/MS-based metabolite profiling. Metabolomics, 6(1), 137–145. doi:10.1007/s11306-009-0182-2.

    Article  CAS  Google Scholar 

  • Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell and Environment, 28, 318–327.

    Article  CAS  Google Scholar 

  • Vokou, D., Kokkini, S., & Bessiere, J. M. (1993). Geographic-variation of Greek oregano (Origanum Vulgare ssp. Hirtum) essential oils. Biochemical Systematics and Ecology, 21, 287–295.

    Article  CAS  Google Scholar 

  • Wei, Y. M., Wang, L. H., Cao, F. L., Wei, S. Q., & Liang, Y. D. (2010). Variation and cluster analysis on leaf characters from different provenance sources of Polygonum multiflorum Thunb. Agricultural Science and Technology, 11, 94–98.

  • Wilks, P. (2006). NIR versus Mid-IR: How to choose. Spectroscopy, 21(4), 43–48.

  • Xu, C., Wang, Y., Chen, J., et al. (2013). Infrared macro-fingerprint analysis-through-separation for holographic chemical characterization of herbal medicine. Journal of Pharmaceutical and Biomedical Analysis, 74, 298–307.

    Article  CAS  PubMed  Google Scholar 

  • Yaacob, K. B. (1987). Kesom oil: A natural source of aliphatic aldehydes. Perfumer and Flavorist, 12, 27–30.

    CAS  Google Scholar 

  • Zhang, Z. X., Liu, P., Kang, H. J., Liao, C. C., Chen, Z. L., & Xu, G. D. (2008). A study of the diversity of different geographical populations of Emmenopterys henryi using FTIR based on principal component analysis and cluster analysis. Spectroscopy Spectral Analysis, 28(9), 2081–2086.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research is supported by the Genomics and Molecular Biology Initiative of the Malaysia Genome Institute, Ministry of Science, Technology and Innovation (07-05-MGI-GMB 004), Research University Grant under the Arus Perdana (UKM-AP-BPB-14-2009) and Fundamental Research Grant Scheme (UKM-RB-06-FRGS0102-2009). The authors would like to thank the reviewers and Prof. Dr. Michael Burrell from University of Sheffield for their constructive comments throughout the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syarul Nataqain Baharum.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khairudin, K., Sukiran, N.A., Goh, HH. et al. Direct discrimination of different plant populations and study on temperature effects by Fourier transform infrared spectroscopy. Metabolomics 10, 203–211 (2014). https://doi.org/10.1007/s11306-013-0570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0570-5

Keywords

Navigation