, Volume 10, Issue 2, pp 291–301 | Cite as

A new strategy based on real-time secondary electrospray ionization and high-resolution mass spectrometry to discriminate endogenous and exogenous compounds in exhaled breath

  • Christian Berchtold
  • Lukas Meier
  • Robert Steinhoff
  • Renato ZenobiEmail author
Original Article


Breath is considered to be an easily accessible matrix, whose chemical composition relates to compounds present in blood. Therefore many metabolites are expected in exhaled breath, which may be used in the future for the development of diagnostic methods. In this article, a new strategy to discriminate between exhaled endogenous metabolites and exhaled exogenous contaminants by direct high-resolution mass spectrometry is introduced. The analysis of breath in real-time by secondary electrospray ionization mass spectrometry allows to interpret the origin of exhaled compounds. Exhaled metabolites that originate in the respiratory system show reproducible and significant patterns if plotted in real-time (>1 data point per second). An exhaled metabolite shows a signal that tends to rise at the end of a complete (forced) exhalation. In contrast, exogenous compounds, which may be present in room air, are gradually diluted by the air from the deeper lung and therefore show a trend of falling intensity. Signals found in breath by using this pattern recognition are linked to potential metabolites by comparison with online databases. In addition to this real-time approach, it is also shown how to combine this method with classical analytical methods in order to potentially identify unknown metabolites. Finally exhaled compounds following smoking a cigarette, chewing gum, or drinking coffee were investigated to underline the usefulness of this new approach.


Breath analysis Mass spectrometry Secondary electrospray ionization Identification strategy 



Atmospheric pressure chemical ionization


Dalton, molecular mass unit g/mol


Exhaled breath condensate


Electron impact mass spectrometry


Human metabolite data base


High performance liquid chromatography


Mass spectrometry


Proton transfer reaction mass spectrometry


Secondary electrospray ionization


Selected ion flow tube mass spectrometry


Solid phase micro extraction


Ultra performance liquid chromatography



We thank the Swiss National Science Foundation for financial support (grant no. K-23K1-122264). Pablo Martinez-Lozano Sinues is acknowledged for critical review of the manuscript. Special thanks goes to the team from the Functional Genomics Center at the University Zürich for the access to their instrument.

Supplementary material

11306_2013_568_MOESM1_ESM.docx (647 kb)
Supplementary material 1 (DOCX 647 kb)


  1. Abbanat, D. R., Godchaux, W., Polychroniou, G., & Leadbetter, E. R. (1985). Biosynthesis of a sulfonolipid in gliding bacteria. Biochemical and Biophysical Research Communications, 130, 873–878. doi: 10.1016/0006-291x(85)90497-8.CrossRefPubMedGoogle Scholar
  2. Alberici, R. M., et al. (2010). Ambient mass spectrometry: Bringing MS into the “real world”. Analytical and Bioanalytical Chemistry, 398, 265–294. doi: 10.1007/s00216-010-3808-3.CrossRefPubMedGoogle Scholar
  3. Beck, O., Sandqvist, S., Eriksen, P., Franck, J., & Palmskog, G. (2011). Determination of methadone in exhaled breath condensate by liquid chromatography-tandem mass spectrometry. Journal of Analytical Toxicology, 35, 129–133.CrossRefPubMedGoogle Scholar
  4. Benoit, F. M., Davidson, W. R., Lovett, A. M., Nacson, S., & Ngo, A. (1983). Breath analysis by atmospheric-pressure ionization mass-spectrometry. Analytical Chemistry, 55, 805–807.CrossRefGoogle Scholar
  5. Berchtold, C., Meier, L., & Zenobi, R. (2011). Evaluation of extractive electrospray ionization and atmospheric pressure chemical ionization for the detection of narcotics in breath. International Journal of Mass Spectrometry, 299, 145–150. doi: 10.1016/j.ijms.2010.10.011.CrossRefGoogle Scholar
  6. Biasioli, F., Yeretzian, C., Maerk, T. D., Dewulf, J., & Van Langenhove, H. (2011). Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trac-Trends in Analytical Chemistry, 30, 1003–1017. doi: 10.1016/j.trac.2011.04.005.CrossRefGoogle Scholar
  7. Buszewski, B., Kesy, M., Ligor, T., & Amann, A. (2007). Human exhaled air analytics: Biomarkers of diseases. Biomedical Chromatography, 21, 553–566. doi: 10.1002/bmc.835.CrossRefPubMedGoogle Scholar
  8. Carpagnano, G. E., Barnes, P. J., Francis, J., Wilson, N., Bush, A., & Kharitonov, S. A. (2004). Breath condensate pH in children with cystic fibrosis and asthma: A new noninvasive marker of airway inflammation? Chest, 125, 2005–2010. doi: 10.1378/chest.125.6.2005.CrossRefPubMedGoogle Scholar
  9. Cathcart, M. P., Love, S., & Hughes, K. J. (2012). The application of exhaled breath gas and exhaled breath condensate analysis in the investigation of the lower respiratory tract in veterinary medicine: A review. Veterinary Journal, 191, 282–291. doi: 10.1016/j.tvjl.2011.08.016.CrossRefGoogle Scholar
  10. Cazzola, M., & Novelli, G. (2010). Biomarkers in COPD. Pulmonary Pharmacology and Therapeutics, 23, 493–500. doi: 10.1016/j.pupt.2010.05.001.CrossRefPubMedGoogle Scholar
  11. Chen, H. W., Gamez, G., & Zenobi, R. (2009a). What can we learn from ambient ionization techniques? Journal of the American Society for Mass Spectrometry, 20, 1947–1963. doi: 10.1016/j.jasms.2009.07.025.CrossRefPubMedGoogle Scholar
  12. Chen, H., Hu, B., Hu, Y., Huan, Y., Zhou, Z., & Qiaoc, X. (2009b). Neutral desorption using a sealed enclosure to sample explosives on human skin for rapid detection by EESI–MS. Journal of the American Society for Mass Spectrometry, 20, 719–722.CrossRefPubMedGoogle Scholar
  13. Costa, C., Bucca, C., Bergallo, M., Solidoro, P., Rolla, G., & Cavallo, R. (2011). Unsuitability of exhaled breath condensate for the detection of Herpesviruses DNA in the respiratory tract. Journal of Virological Methods, 173, 384–386. doi: 10.1016/j.jviromet.2011.02.004.CrossRefPubMedGoogle Scholar
  14. Dillon, L. A., Stone, V. N., Croasdell, L. A., Fielden, P. R., Goddard, N. J., & Thomas, C. L. P. (2010). Optimisation of secondary electrospray ionisation (SESI) for the trace determination of gas-phase volatile organic compounds. Analyst, 135, 306–314. doi: 10.1039/b918899a.CrossRefPubMedGoogle Scholar
  15. Dwyer, T. M. (2004). Sampling airway surface liquid: Non-volatiles in the exhaled breath condensate. Lung, 182, 241–250. doi: 10.1007/s00408-004-2506-3.CrossRefPubMedGoogle Scholar
  16. Effros, R. M., Dunning, M. B., Biller, J., & Shaker, R. (2004). The promise and perils of exhaled breath condensates. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287, L1073–L1080. doi: 10.1152/ajplung.00069.2004.CrossRefPubMedGoogle Scholar
  17. Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171. doi: 10.1023/a:1013713905833.CrossRefPubMedGoogle Scholar
  18. Gamez, G., et al. (2011). Real-time, in vivo monitoring and pharmacokinetics of valproic acid via a novel biomarker in exhaled breath. Chemical Communications, 47, 4884–4886. doi: 10.1039/c1cc10343a.CrossRefPubMedGoogle Scholar
  19. Huang, M.-Z., Cheng, S.-C., Cho, Y.-T., & Shiea, J. (2011). Ambient ionization mass spectrometry: A tutorial. Analytica Chimica Acta, 702, 1–15. doi: 10.1016/j.aca.2011.06.017.CrossRefPubMedGoogle Scholar
  20. Hunt, J. (2002). Exhaled breath condensate: An evolving tool for noninvasive evaluation of lung disease. Journal of Allergy and Clinical Immunology, 110, 28–34. doi: 10.1067/mai.2002.124966.CrossRefPubMedGoogle Scholar
  21. Johnson, G. R., & Morawska, L. (2009). The mechanism of breath aerosol formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 22, 229–237. doi: 10.1089/jamp.2008.0720.CrossRefPubMedGoogle Scholar
  22. Kardani, F., Daneshfar, A., & Sahrai, R. (2010). Determination of nicotine, anabasine, and cotinine in urine and saliva samples using single-drop microextraction. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 878, 2857–2862. doi: 10.1016/j.jchromb.2010.08.041.CrossRefGoogle Scholar
  23. Kim, K. H., Jahan, S. A., & Kabir, E. (2012). A review of breath analysis for diagnosis of human health. Trac-Trends in Analytical Chemistry, 33, 1–8. doi: 10.1016/j.trac.2011.09.013.CrossRefGoogle Scholar
  24. Kind, T., & Fiehn, O. (2007). Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105. doi: 10.1186/1471-2105-8-105.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Marek, E. M., Volke, J., Hawener, I., Platen, P., Muckenhoff, K., & Marek, W. (2010). Measurements of lactate in exhaled breath condensate at rest and after maximal exercise in young and healthy subjects. Journal of Breath Research, 4, 017105. doi: 10.1088/1752-7155/4/1/017105.CrossRefPubMedGoogle Scholar
  26. Martinez-Lozano, P., & Fernandez de la Mora, J. (2009). On-line detection of human skin vapors. Journal of the American Society for Mass Spectrometry, 20, 1060–1063. doi: 10.1016/j.jasms.2009.01.012.CrossRefPubMedGoogle Scholar
  27. Martinez-Lozano, P., & Fernandezde la Mora, J. (2008). Direct analysis of fatty acid vapors in breath by electrospray ionization and atmospheric pressure ionization-mass spectrometry. Analytical Chemistry, 80, 8210–8215. doi: 10.1021/ac801185e.CrossRefPubMedGoogle Scholar
  28. Martinez-Lozano, P., Zingaro, L., Finiguerra, A., & Cristoni, S. (2011). Secondary electrospray ionization-mass spectrometry: Breath study on a control group. Journal of Breath Research, 5, 016002. doi: 10.1088/1752-7155/5/1/016002.CrossRefPubMedGoogle Scholar
  29. Mazzone, P. J., et al. (2012). Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. Journal of Thoracic Oncology, 7, 137–142. doi: 10.1097/JTO.0b013e318233d80f.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meier, L., Berchtold, C., Schmid, S., & Zenobi, R. (2012a). Extractive electrospray ionization mass spectrometry enhanced sensitivity using an ion funnel. Analytical Chemistry, 84, 2076–2080. doi: 10.1021/ac203022x.CrossRefPubMedGoogle Scholar
  31. Meier, L., Berchtold, C., Schmid, S., & Zenobi, R. (2012b). High mass resolution breath analysis using secondary electrospray ionization mass spectrometry assisted by an ion funnel. Journal of Mass Spectrometry, 47, 1571–1575. doi: 10.1002/jms.3118.CrossRefPubMedGoogle Scholar
  32. Meier, L., Berchtold, C., Schmid, S., & Zenobi, R. (2012c). Sensitive detection of drug vapors using an ion funnel interface for secondary electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 47, 555–559. doi: 10.1002/jms.2982.CrossRefPubMedGoogle Scholar
  33. Meier, L., Schmid, S., Berchtold, C., & Zenobi, R. (2011). Contribution of liquid-phase and gas-phase ionization in extractive electrospray ionization mass spectrometry of primary amines. European Journal of Mass Spectrometry, 17, 345–351. doi: 10.1255/ejms.1146.CrossRefPubMedGoogle Scholar
  34. Oberacher, M., Pohl, D., Vavricka, S. R., Fried, M., & Tutuian, R. (2011). Diagnosing lactase deficiency in three breaths. European Journal of Clinical Nutrition, 65, 614–618. doi: 10.1038/ejcn.2010.287.CrossRefPubMedGoogle Scholar
  35. Phillips, M., et al. (1999). Volatile organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet, 353, 1930–1933. doi: 10.1016/s0140-6736(98)07552-7.CrossRefPubMedGoogle Scholar
  36. Risby, T. H. (2008). Critical issues for breath analysis. Journal of Breath Research,. doi: 10.1088/1752-7155/2/3/030302.Google Scholar
  37. Risby, T. H., & Solga, S. F. (2006). Current status of clinical breath analysis. Applied Physics B-Lasers and Optics, 85, 421–426. doi: 10.1007/s00340-006-2280-4.CrossRefGoogle Scholar
  38. Schwoebel, H., et al. (2011). Phase-resolved real-time breath analysis during exercise by means of smart processing of PTR-MS data. Analytical and Bioanalytical Chemistry, 401, 2079–2091. doi: 10.1007/s00216-011-5173-2.CrossRefPubMedGoogle Scholar
  39. Shahid, S. K., Kharitonov, S. A., Wilson, N. M., Bush, A., & Barnes, P. J. (2005). Exhaled 8-isoprostane in childhood asthma. Respiratory Research, 6, 79. doi: 10.1186/1465-9921-6-79.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sinues, P. M.-L., Criado, E., & Vidal, G. (2012). Mechanistic study on the ionization of trace gases by an electrospray plume. International Journal of Mass Spectrometry, 313, 21–29. doi: 10.1016/j.ijms.2011.12.010.CrossRefGoogle Scholar
  41. Smith, D., & Španel, P. (2011). Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. Trac-Trends in Analytical Chemistry, 30, 945–959. doi: 10.1016/j.trac.2011.05.001.CrossRefGoogle Scholar
  42. Smith, D., Wang, T., Pysanenko, A., & Španel, P. (2008). A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Communications in Mass Spectrometry, 22, 783–789. doi: 10.1002/rcm.3434.CrossRefPubMedGoogle Scholar
  43. Španel, P., & Smith, D. (2011). Progress in Sift-MS: Breath analysis and other applications. Mass Spectrometry Reviews, 30, 236–267. doi: 10.1002/mas.20303.CrossRefPubMedGoogle Scholar
  44. Stabbert, R., Schafer, K. H., Biefel, C., & Rustemeier, K. (2003). Analysis of aromatic amines in cigarette smoke. Rapid Communications in Mass Spectrometry, 17, 2125–2132. doi: 10.1002/rcm.1161.CrossRefPubMedGoogle Scholar
  45. Thekedar, B., Szymczak, W., Hollriegl, V., Hoeschen, C., & Oeh, U. (2009). Investigations on the variability of breath gas sampling using PTR-MS. Journal of Breath Research, 3(2), 027007. doi: 10.1088/1752-7155/3/2/027007.CrossRefPubMedGoogle Scholar
  46. Torikaiu, K., Uwano, Y., Nakamori, T., Tarora, W., & Takahashi, H. (2005). Study on tobacco components involved in the pyrolytic generation of selected smoke constituents. Food and Chemical Toxicology, 43, 559–568. doi: 10.1016/j.fct.2004.12.011.CrossRefPubMedGoogle Scholar
  47. Van den Velde, S., Nevens, F., Van Hee, P., van Steenberghe, D., & Quirynen, M. (2008). GC–MS analysis of breath odor compounds in liver patients. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 875, 344–348. doi: 10.1016/j.jchromb.2008.08.031.CrossRefGoogle Scholar
  48. Wardlaw, A. J., Hay, H., Cromwell, O., Collins, J. V., & Kay, A. B. (1989). Leutokrines, LTC4 and LTB4, in bronchoalveolar lavage in bronchial-asthma and other respiratory-disease. Journal of Allergy and Clinical Immunology, 84, 19–26. doi: 10.1016/0091-6749(89)90173-5.CrossRefPubMedGoogle Scholar
  49. White, R. H. (1984). Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga-Johnsonae. Journal of Bacteriology, 159, 42–46.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christian Berchtold
    • 1
  • Lukas Meier
    • 1
  • Robert Steinhoff
    • 1
  • Renato Zenobi
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesETH ZurichZurichSwitzerland

Personalised recommendations