Skip to main content

Seasonal changes in the metabolic fingerprint of Juniperus communis L. berry extracts by 1H NMR-based metabolomics

Abstract

The economically important crop Juniperus communis (Cupressaceae) is a coniferous evergreen shrub or tree distributed throughout the temperate zone of the Northern hemisphere. Its dried bluish-black cones, known as “juniper berries”, are used as flavoring agent in foodstuffs and spirits, while their extracts are widely employed in medicine for their antimicrobial, antifungal, and anticancerogenous activity. Despite their medicinal and commercial values, no systematic studies on the metabolome of J. communis berries have been carried out so far. We have investigated the metabolic profiles of J. communis berries by NMR spectroscopy and statistical analysis, aiming at monitoring their seasonal variation. Principal components analysis and partial least square discriminant analysis of proton NMR spectra provided a clear class separation according to the ripeness and the harvest season, with well-defined metabolic profiles for each class. The results show that the Juniperus metabolome is dominated by 26 metabolites including sugars, amino acids, organic acids and diterpenes. The specificity of NMR profiles offers a powerful tool for assessing the molecular determinants characterizing the quality of this commercially important crop.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

ASL:

Above sea level

HSQC:

Heteronuclear single quantum coherence spectroscopy

NMR:

Nuclear magnetic resonance

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

TOCSY:

Total correlation spectroscopy

References

  • Angioni, A., Barra, A., Russo, M. T., Coroneo, V., Dessi, S., & Cabras, P. (2003). Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. Journal of Agricultural and Food Chemistry, 51, 3073–3078.

    Article  PubMed  Google Scholar 

  • Aziz, N., Paiva, N. L., May, G. D., & Dixon, R. A. (2005). Profiling the transcriptome of alfalfa glandular trichomes. Planta, 221, 28–38.

    CAS  Article  PubMed  Google Scholar 

  • Bais, H. P., Venkatachalam, L., & Biedrzycki, M. L. (2010). Stimulation or inhibition: conflicting evidence for (±)-catechin’s role as a chemical facilitator and disease protecting agent. Plant Signaling & Behavior, 5, 239–246.

    CAS  Article  Google Scholar 

  • Barjaktarović, B., Sovili, M., & Knez, Ž. (2005). Chemical composition of Juniperus communis L. fruits supercritical CO2 extracts: dependence on pressure and extraction time. Journal of Agricultural and Food Chemistry, 53, 2630–2636.

    Article  PubMed  Google Scholar 

  • Bax, A., & Davis, D. G. (1985). MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. Journal of Magnetic Resonance, 65, 355–360.

    CAS  Google Scholar 

  • Bolognese, C. P., & McGraw, P. (2000). The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine: Phosphoethanolamine N-methyltransferase. Plant Physiology, 124, 1800–1813.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Chaitanya, K. V., Sundar, D., & Reddy, A. R. (2001). Mulberry leaf metabolism under high temperature stress. Biologia Plantarum, 44, 379–384.

    CAS  Article  Google Scholar 

  • Chao, W. S., Foley, M. E., Horvath, D. P., & Anderson, J. V. (2007). Signals regulating dormancy in vegetative buds. International Journal of Plant Development Biology, 1, 49–56.

    Google Scholar 

  • De Marino, S., et al. (2011). Imbricatolic acid from Juniperus communis L. prevents cell cycle progression in CaLu-6 cells. Planta Medica, 77, 1822–1828.

    Article  PubMed  Google Scholar 

  • Dewick, P. M. (2009). Medicinal natural products: A biosynthetic approach (3rd ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Dixon, R. A., Xie, D.-Y., & Sharma, S. B. (2005). Proanthocyanidins: A final frontier in flavonoid research? New Phytologist, 165, 9–28.

    CAS  Article  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S. (2006). Multi- and megavariate data analysis. Basic principles and applications (Vol. 1). Umeå: Umetrics Academy.

    Google Scholar 

  • European Pharmacopoeia. (2008). European directorate for the quality of medicines & health care (6th ed., Vol. 3, p. 2206). Strasburg: Council of Europe.

    Google Scholar 

  • Fang, J. M., Sou, Y. C., Chiu, Y. H., & Cheng, Y. S. (1993). Diterpenes from the bark of Juniperus chinensis. Phytochemistry, 34, 1581–1584.

    CAS  Article  Google Scholar 

  • Ferri, M., Righetti, L., & Tassoni, A. (2011). Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. Journal of Plant Physiology, 168, 189–195.

    CAS  Article  PubMed  Google Scholar 

  • Filipowicz, N., Kaminski, M., Kurlenda, J., Asztemborska, M., & Ochocka, J. R. (2003). Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytotherapy Research, 17, 227–231.

    CAS  Article  PubMed  Google Scholar 

  • Griesinger, C., Otting, G., Wüthrich, K., & Ernst, R. R. (1988). Clean TOCSY for proton spin system identification in macromolecules. Journal of the American Chemical Society, 110, 7870–7872.

    CAS  Article  Google Scholar 

  • Herrmann, K. M., & Weaver, L. M. (1999). The shikimate pathway. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 473–503.

    CAS  Article  PubMed  Google Scholar 

  • Hwang, T.-L., & Shaka, A. J. (1995). Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. Journal of Magnetic Resonance Series A, 112, 275–279.

    CAS  Article  Google Scholar 

  • Innocenti, M., Michelozzi, M., Giaccherini, C., Ieri, F., Vincieri, F. F., & Mulinacci, N. (2007). Flavonoids and biflavonoids in Tuscan berries of Juniperus communis L.: detection and quantitation by HPLC/DAD/ESI/MS. Journal of Agricultural and Food Chemistry, 55, 6596–6602.

    CAS  Article  PubMed  Google Scholar 

  • International Trade Centre UNCTAD/WTO (2007). Overview of world production and marketing of organic wild collected products. Geneva: Palais des Nations. (http://www.intracen.org). Accessed 13 Mar 2013.

  • Jang, J.-C., León, P., Zhou, L., & Sheen, J. (1997). Hexokinase as a sugar sensor in higher plants. Plant Cell, 9, 5–19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Kalinova, J., & Vrchotova, N. (2009). Level of catechin, myricetin, quercetin and isoquercitrin in buckwheat (Fagopyrum esculentum Moench), changes of their levels during vegetation and their effect on the growth of selected weeds. Journal of Agricultural and Food Chemistry, 57, 2719–2725.

    CAS  Article  PubMed  Google Scholar 

  • Kay, L. E., Keifer, P., & Saarinen, T. (1992). Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. Journal of the American Chemical Society, 114, 10663–10665.

    CAS  Article  Google Scholar 

  • Koch, K. (2004). Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology, 7, 235–246.

    CAS  Article  PubMed  Google Scholar 

  • Leung, A. Y., & Foster, S. (1996). Encyclopedia of common natural ingredients used in food, drugs and cosmetics (2nd ed., pp. 325–327). New York: Wiley Interscience.

    Google Scholar 

  • Lindon, J. C., et al. (2005). Standard metabolic reporting structures working group. Summary recommendations for standardization and reporting of metabolic analyses. Nature Biotechnology, 23, 833–838.

    CAS  Article  PubMed  Google Scholar 

  • Liu, Y., et al. (2012). Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant [Camellia sinensis]. The Journal of Biological Chemistry, 287, 44406–44417.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Llorach-Asunción, R., Jauregui, O., Urpi-Sarda, M., & Andres-Lacueva, C. (2010). Methodological aspects for metabolome visualization and characterization. A metabolomic evaluation of the 24 h evolution of human urine after cocoa powder consumption. Journal of Pharmaceutical and Biomedical Analysis, 51, 373–381.

    Article  PubMed  Google Scholar 

  • Lunn, J. E. (2008). Sucrose metabolism. In Encyclopedia of life sciences (ELS). Chichester: Wiley Ltd. doi: 10.1002/9780470015902.a0021259.

  • Martin, A. M., Queiroz, E. F., Marston, A., & Hostettmann, K. (2006). Labdane diterpenes from Juniperus communis L. berries. Phytochemical Analysis, 17, 32–35.

    CAS  Article  PubMed  Google Scholar 

  • Miceli, N., et al. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of Agricultural and Food Chemistry, 57, 6570–6577.

    CAS  Article  PubMed  Google Scholar 

  • Moore, T. S. (1990). Biosynthesis of phosphatidylinositol. In D. J. Morré, W. F. Boss, & F. A. Loewus (Eds.), Inositol metabolism in plants (Vol. 9, pp. 107–112). New York: Wiley-Liss Inc.

    Google Scholar 

  • Mugnaini, S., Nepi, M., Guarnieri, M., Piotto, B., & Pacini, E. (2007). Pollination drop in Juniperus communis: Response to deposited material. Annals of Botany, 100, 1475–1481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakanishi, T., et al. (2005). A monoterpene glucoside and three megastigmane glycosides from Juniperus communis var. depressa. Chemical & Pharmaceutical Bulletin, 53, 783–787.

    CAS  Article  Google Scholar 

  • Palmer, A. G, I. I. I., Cavanagh, J., Wright, P. E., & Rance, M. (1991). Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. Journal of Magnetic Resonance, 93, 151–170.

    CAS  Google Scholar 

  • Peer, W. A., & Murphy, A. S. (2006). Flavonoids as signal molecules: Targets of flavonoid action. In E. Grotewold (Ed.), The science of flavonoids (pp. 239–268). New York: Springer Science.

    Chapter  Google Scholar 

  • Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 57, 675–709.

    CAS  Article  PubMed  Google Scholar 

  • Sakamoto, A., & Murata, N. (2000). Genetic engineering of glycinebetaine synthesis in plants: current status and implication for enhancement of stress tolerance. Journal of Experimental Botany, 51, 81–88.

    CAS  Article  PubMed  Google Scholar 

  • San Feliciano, A., Caballero, E., Del Rey, B., & Sancho, I. (1991). Diterpene acids from Juniperus communis subsp. hemisphaerica. Phytochemistry, 30, 3134–3136.

    CAS  Article  Google Scholar 

  • Sanchez de Medina, F., Gamez, M. J., Jimenez, I., Jimenez, J., Osuna, J. I., & Zarzuelo, A. (1994). Hypoglycemic activity of juniper “berries”. Planta Medica, 60, 197–200.

    CAS  Article  PubMed  Google Scholar 

  • Schleucher, J., et al. (1994). A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. Journal of Biomolecular NMR, 4, 301–306.

    CAS  Article  PubMed  Google Scholar 

  • Simões, K., et al. (2008). Phytotoxic catechin leached by seeds of the tropical weed Sesbania virgata. Journal of Chemical Ecology, 34, 681–687.

    Article  PubMed  Google Scholar 

  • Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., & Perata, P. (2006). Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140, 637–646.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Stanić, G., Samaržija, I., & Blažević, N. (1998). Time-dependent diuretic response in rats treated with juniper berry preparations. Phytotherapy Research, 12, 494–497.

    Article  Google Scholar 

  • Taiz, L. (1992). The plant vacuole. Journal of Experimental Biology, 172, 113–122.

    CAS  PubMed  Google Scholar 

  • Vichi, S., Riu-Aumatell, M., Mora-Pons, M., Buxaderas, S., & Lopez-Tamames, E. (2005). Characterization of volatiles in different dry gins. Journal of Agricultural and Food Chemistry, 53, 10154–10160.

    CAS  Article  PubMed  Google Scholar 

  • Vu, J. C. V., Gesch, R. W., Pennanen, A. H., Allen, L. H. J., Boote, K. J., & Bowes, G. (2001). Soybean photosynthesis, rubisco and carbohydrate enzymes function at supra-optimal temperatures in elevated CO2. Journal of Plant Physiology, 158, 295–307.

    CAS  Article  Google Scholar 

  • Weaver, L. M., & Herrmann, K. M. (1997). Dynamics of the shikimate pathway in plants. Trends in Plant Science, 2, 346–351.

    Article  Google Scholar 

  • Westerhuis, J. A., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

    CAS  Article  Google Scholar 

  • Wink, M. (1993). The plant vacuole: a multifunctional compartment. Journal of Experimental Botany, 44(supplement), 231–246.

    CAS  Google Scholar 

  • Zhang, H., et al. (2007). Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226, 839–851.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Paola Fortini for careful identification of J. communis berries.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Motta or Maria Iorizzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 15 kb)

Supplementary Fig. S1

1H-NMR spectra of the methanol/water extracts of J. communis berries in spring (a), summer (b), autumn (c) and winter (d). Spectra have been scaled to internal 100-μM TSP, assumed to resonate at 0.00 ppm. Peaks are labeled according to supplementary Table S1 (TIFF 465 kb)

Supplementary Fig. S2

1H-NMR spectra of the chloroform extracts of J. communis berries in spring (a), summer (b), autumn (c) and winter (d). Spectra have been scaled to residual chloroform signal, assumed to resonate at 7.26 ppm. Spectral insets show the aldehydic cis-communal signal (spectrum A), and the cistrans ratio of the communic acid (inset in the spectrum D, c and t). Peaks are labeled according to supplementary Table S2 (TIFF 415 kb)

Supplementary Fig. S3

Characteristic components detected in J. communis berries extracts. Carbon numbering of the skeleton is used throughout the manuscript for NMR assignment (DOCX 21 kb)

Supplementary Fig. S4

Variables of importance plot (VIP) representing the 15 most important ‘buckets’ generating the models separating consecutive seasons for the polar metabolite components. The x-axis reports the buckets, identified with chemical shift (in ppm), and is labeled ‘VAR-ID’ (variable identity); the y-axis, labeled ‘VIP[2]’, shows the strength of the labeled metabolites in the classification between consecutive seasons. Error bars represent 95 % CIs (TIFF 159 kb)

Supplementary Fig. S5

Variables of importance plot (VIP) representing the 15 most important ‘buckets’ generating the models separating consecutive seasons for the apolar metabolite components. The x-axis reports the buckets, identified with chemical shift (in ppm), and is labeled ‘VAR-ID’ (variable identity); the y-axis, labeled ‘VIP[2]’, shows the strength of the labeled metabolites in the classification between consecutive seasons. Error bars represent 95 % CIs (TIFF 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Falasca, A., Melck, D., Paris, D. et al. Seasonal changes in the metabolic fingerprint of Juniperus communis L. berry extracts by 1H NMR-based metabolomics. Metabolomics 10, 165–174 (2014). https://doi.org/10.1007/s11306-013-0566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0566-1

Keywords

  • Juniperus communis L.
  • NMR-based metabolomics
  • Principal component analysis
  • Plant secondary metabolites
  • Labdane derivatives