Metabolomics

, Volume 10, Issue 1, pp 132–140 | Cite as

No genetic footprints of the fat mass and obesity associated (FTO) gene in human plasma 1H CPMG NMR metabolic profiles

  • K. Kjeldahl
  • M. A. Rasmussen
  • A. L. Hasselbalch
  • K. O. Kyvik
  • L. Christiansen
  • S. Rezzi
  • S. Kochhar
  • T. I. A. Sørensen
  • R. Bro
Original Article

Abstract

In this paper it was investigated if any genotypic footprints from the fat mass and obesity associated (FTO) SNP could be found in 600 MHz 1H CPMG NMR profiles of around 1,000 human plasma samples from healthy Danish twins. The problem was addressed with a combination of univariate and multivariate methods. The NMR data was substantially compressed using principal component analysis or multivariate curve resolution-alternating least squares with focus on chemically meaningful feature selection reflecting the nature of chemical signals in an NMR spectrum. The possible existence of an FTO signature in the plasma samples was investigated at the subject level using supervised multivariate classification in the form of extended canonical variate analysis, classification tree modeling and Lasso (L1) regularized linear logistic regression model (GLMNET). Univariate hypothesis testing of peak intensities was used to explore the genotypic effect on the plasma at the population level. The multivariate classification approaches indicated poor discriminative power of the metabolic profiles whereas univariate hypothesis testing provided seven spectral regions with p < 0.05. Applying false discovery rate control, no reliable markers could be identified, which was confirmed by test set validation. We conclude that it is very unlikely that an FTO-correlated signal can be identified in these 1H CPMG NMR plasma metabolic profiles and speculate that high-throughput un-targeted genotype-metabolic correlations will in many cases be a difficult path to follow.

Keywords

FTO NMR CPMG Data compression ECVA MCR-ALS 

References

  1. An, G., Bartels, J., & Vodovotz, Y. (2010). In silico augmentation of the drug development pipeline: Examples from the study of acute inflammation. Drug Development Research, 72(2), 187-200Google Scholar
  2. Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., & Nicholson, J. K. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols, 2(11), 2692–2703.CrossRefPubMedGoogle Scholar
  3. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.Google Scholar
  4. Benyamin, B., Sørensen, T., Schousboe, K., Fenger, M., Visscher, P., & Kyvik, K. (2007). Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome?. Diabetologia, 50, 1880–1888. doi:10.1007/s00125-007-0758-1.CrossRefPubMedGoogle Scholar
  5. Berentzen, T., Kring, S. I. I., Holst, C., Zimmermann, E., Jess, T., Hansen, T., Pedersen, O., Toubro, S., Astrup, A., & Sørensen, T. I. A. (2008). Lack of association of fatness-related FTO gene variants with energy expenditure or physical activity. Journal of Clinical Endocrinology & Metabolism, 93(7), 2904–2908.CrossRefPubMedGoogle Scholar
  6. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey: Wadsworth & Brooks/Cole Advanced Books & Software.Google Scholar
  7. Daszykowski, M., Walczak, B., & Massart, D. L. (2002). Representative subset selection. Analytica Chimica Acta, 468(1), 91–103.CrossRefGoogle Scholar
  8. Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R. B., Elliott, K. S., Lango, H., Rayner, N. W., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316(5826), 889.Google Scholar
  9. Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. Annals, 1(2), 302–332.Google Scholar
  10. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of statistical software, 33(1), 1.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gerken, T., Girard, C. A., Tung, Y. C. L., Webby, C. J., Saudek, V., Hewitson, K. S., Yeo, G. S. H., McDonough, M. A., Cunliffe, S., McNeill, L. A., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 318(5855), 1469.Google Scholar
  12. Hasselbalch, A. L., Angquist, L., Christiansen, L., Heitmann, B. L., Kyvik, K. O. & Sørensen, T. I. A. (2010). A variant in the fat mass and obesity-associated gene (FTO) and variants near the melanocortin-4 receptor gene (MC4R) do not influence dietary intake. Journal of Nutrition, 140(4), 831.CrossRefPubMedGoogle Scholar
  13. Haupt, A., Thamer, C., Staiger, H., Tschritter, O., Kirchhoff, K., Machicao, F., Haring, H. U., Stefan, N., & Fritsche, A. (2009). Variation in the FTO gene influences food intake but not energy expenditure. Exp Clin Endocrinol Diabetes, 117, 194–197.CrossRefPubMedGoogle Scholar
  14. Hennig, B., Fulford, A., Sirugo, G., Rayco-Solon, P., Hattersley, A., Frayling, T., & Prentice, A. (2009). Fto gene variation and measures of body mass in an african population. BMC Medical Genetics, 10(1), 21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417–441.CrossRefGoogle Scholar
  16. Jess, T., Zimmermann, E., Kring, S. I. I., Berentzen, T., Holst, C., Toubro, S., Astrup, A., Hansen, T., Pedersen, O., & Sørensen, T. I. A. (2008). Impact on weight dynamics and general growth of the common fto rs9939609: A longitudinal Danish cohort study. International Journal of Obesity, 32(9), 1388–1394.CrossRefPubMedGoogle Scholar
  17. Kennard, R.W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137–148.CrossRefGoogle Scholar
  18. Kring, S. I. I., Holst, C., Zimmermann, E., Jess, T., Berentzen, T., Toubro, S., Hansen, T., Astrup, A., Pedersen, O., & Sørensen, T. I. A. (2008). Fto gene associated fatness in relation to body fat distribution and metabolic traits throughout a broad range of fatness. PLoS One, 3(8), e2958.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nørgaard, L., Bro, R., Westad, F., & Engelsen, S. B. (2006). A modification of canonical variates analysis to handle highly collinear multivariate data. Journal of Chemometrics, 20, 425–435.CrossRefGoogle Scholar
  20. Peng, S., Zhu, Y., Xu, F., Ren, X., Li, X., & Lai, M. (2011). Fto gene polymorphisms and obesity risk: A meta-analysis. BMC medicine, 9(1), 71.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Peré-Trepat, E., Ross, A. B., Martin, F. P., Rezzi, S., Kochhar, S., Hasselbalch, A. L., Kyvik, K. O., & Sørensen, T. I. A. (2010). Chemometric strategies to assess metabonomic imprinting of food habits in epidemiological studies. Chemometrics and Intelligent Laboratory Systems, 104(1), 95–100.CrossRefGoogle Scholar
  22. Pitman, R. T., Fong, J. T., Billman, P., & Puri, N. (2012). Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner. PloS one, 7(6), e38444.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rezzi, S., Ramadan, Z., Martin, F. P. J., Fay, L. B., van Bladeren, P., Lindon, J. C., Nicholson, J. K., & Kochhar, S. (2007). Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. Journal of proteome research, 6(11), 4469–4477.CrossRefPubMedGoogle Scholar
  24. Saunders, C. L., Chiodini, B. D., Sham, P., Lewis, C. M., Abkevich, V., Adeyemo, A. A., de Andrade, M., Arya, R., Berenson, G. S., Blangero, J., Boehnke, M., Borecki, I. B., Chagnon, Y. C., Chen, W., Comuzzie, A. G., Deng, H.-W., Duggirala, R., Feitosa, M. F., Froguel, P., Hanson, R. L., Hebebrand, J., Huezo-Dias, P., Kissebah, A. H., Li, W., Luke, A., Martin, L. J., Nash, M., Ohman, M., Palmer, L. J., Peltonen, L., Perola, M., Price, R. A., Redline, S., Srinivasan, S. R., Stern, M. P., Stone, S., Stringham, H., Turner, S., Wijmenga, C., & Collier, D. A. (2007). Meta-analysis of genome-wide linkage studies in BMI and obesity[ast]. Obesity, 15(9), 2263–2275.CrossRefPubMedGoogle Scholar
  25. Savorani, F., Tomasi, G., & Engelsen, S.B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202(2), 190–202.CrossRefPubMedGoogle Scholar
  26. Schousboe, K., Visscher, P. M., Erbas, B., Kyvik, K. O., Hopper, J. L., Henriksen, J. E., Heitmann, B. L., & Sørensen, T. I. A. (2003). Twin study of genetic and environmental influences on adult body size, shape, and composition. International Journal of Obesity, 28(1), 39–48.CrossRefGoogle Scholar
  27. Tauler, R., & Barceló, D. (1993). Multivariate curve resolution applied to liquid chromatography–diode array detection. TrAC Trends in Analytical Chemistry, 12(8), 319–327.CrossRefGoogle Scholar
  28. Viant, M. R., Ludwig, C., & Gunther, U. L. (2008). 1D and 2D NMR Spectroscopy: From Metabolic Fingerprinting to Profiling. Metabolomics, metabonomics and metabolite profiling, page 44.Google Scholar
  29. Wahlen, K., Sjolin, E., & Hoffstedt, J. (2008). The common rs9939609 gene variant of the fat mass-and obesity-associated gene FTO is related to fat cell lipolysis. The Journal of Lipid Research, 49(3), 607.CrossRefPubMedGoogle Scholar
  30. Walley, A. J., Asher, J. E., & Froguel, P. (2009). The genetic contribution to non-syndromic human obesity. Nat Rev Genet, 10(7), 431–442.CrossRefPubMedGoogle Scholar
  31. Wang, H., Dong, S., Xu, H., Qian, J., & Yang, J. (2012). Genetic variants in fto associated with metabolic syndrome: A meta-and gene-based analysis. Molecular biology reports, 39(5), 5691–5698.Google Scholar
  32. Wardle, J., Carnell, S., Haworth, C. M. A., Farooqi, I. S., O’Rahilly, S., & Plomin, R. (2008). Obesity associated genetic variation in fto is associated with diminished satiety. J Clin Endocrinol Metab, 93(9), 3640–3643.CrossRefPubMedGoogle Scholar
  33. Yang, W., Kelly, T., & He, J. (2007). Genetic epidemiology of obesity. Epidemiologic reviews, 29(1), 49.CrossRefPubMedGoogle Scholar
  34. Zöllner, S., & Pritchard, J. K. (2007). Overcoming the winner’s curse: Estimating penetrance parameters from case-control data. The American Journal of Human Genetics, 80(4), 605–615.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • K. Kjeldahl
    • 1
  • M. A. Rasmussen
    • 1
  • A. L. Hasselbalch
    • 2
  • K. O. Kyvik
    • 4
  • L. Christiansen
    • 4
  • S. Rezzi
    • 5
  • S. Kochhar
    • 5
  • T. I. A. Sørensen
    • 2
    • 3
  • R. Bro
    • 1
  1. 1.Univ CopenhagenFrederiksberg CDenmark
  2. 2.Institute of Preventive MedicineFrederiksberg and Bispebjerg University HospitalCopenhagenDenmark
  3. 3.Novo Nordisk Centre for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Institute of Regional Health Services Research, University of Southern DenmarkOdense CDenmark
  5. 5.Nestlé Research CenterLausanne 26Switzerland

Personalised recommendations