Skip to main content

GC–MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41

Abstract

Many bacteria produce a wide range of volatile info-chemicals compounds (mVOCs) that constitute an important regulatory factor in the interrelationships among different organisms in microbial ecosystems. It has been shown that Antarctic bacteria isolated from three different sponge species, by producing mVOCs, are able to inhibit specifically the growth of Burkholderia cepacia complex (Bcc) strains (i.e. opportunistic pathogens of cystic fibrosis patients) as demonstrated by cross-streaking inhibition assays. This study reports a metabolomics approach to investigate the volatile profile of both the Antarctic sponge-associated Pseudoalteromonas sp. TB41 (P-sp-TB41) and Burkholderia cenocepacia strain LMG16654 (Bc-LMG16654) under aerobic conditions. Solid phase micro extraction (SPME) in head space of biological samples allowed an in vivo sampling of mVOCs with minimal specimen disturbance. The SPME fiber was termically desorbed in the injection port of gas chromatography–mass spectrometer (GC–MS) system setted in EI scan mode. The raw data were processed using both an automated mass spectra deconvolution and identification system and a metabolomic approach, which allowed a selection of 30 compounds presumably responsible for the inhibition of Bc-LMG16654 growth. The results obtained from samples prepared under cross-streaking conditions also suggest that the presence of Bc-LMG16654 cells neither interferes with the production of mVOCs nor induces the synthesis of different mVOCs. The employing of mass spectrometry played a key role in tuning the experimental system and in the evaluation of results. The use of this approach to study the interaction, in aerobic condition, among other Antarctic bacteria and Bcc and the possibility to extend this approach to other pathogen-antagonist relationship, is currently in progress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ambroise, C., & McLachlan, G. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6562.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Bentley, B., & Bennett, J. (1988). Biosynthesis of secondary metabolites. In D. R. Berry (Ed.), Physiology of industrial fungi (pp. 161–183). Oxford: Blackwell.

    Google Scholar 

  • Bicchi, C., Cordero, C., Liberto, E., Sgorbini, B., & Rubiolo, P. (2007). Reliability of fibres in solid-phase microextraction for routine analysis of the headspace of aromatic and medicinal plants. Journal of Chromatography A, 1152(1–2), 138–149. advances in sample preparation—part I.

    CAS  Article  PubMed  Google Scholar 

  • Bjurman, J. (1999). Release of mVOCs from microorganisms. In T. Salthammer (Ed.), Organic indoor air pollutants: Occurrence, measurement, evaluation. Weinheim: Wiley.

    Google Scholar 

  • Bojko, B., Cudjoe, E., Gómez-Ríos, G., Gorynski, K., Jiang, R., Reyes-Garcés, N., et al. (2012). Spme: Quo vadis? Analytica Chimica Acta, 750, 132–151.

    CAS  Article  PubMed  Google Scholar 

  • Calamai, L., Villanelli, F., Bartolucci, G., Pieraccini, G., & Moneti, G. (2012). Comprehensive sampling and sample preparation (Vol. 4.24). Amsterdam: Elsevier.

    Google Scholar 

  • Claeson, A. (2006). Volatile organic compounds from microorganisms-identification and health effects. Umea University Medical Dissertations 1052.

  • Colby, J. (2011). (multiple) Support Vector Machine Recursive Feature Elimination - mSVM-rfe. http://www.colbyimaging.com/wiki/statistics/msvm-rfe.

  • Duan, K., Rajapakse, J., Wang, H., & Azuaje, F. (2005). Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on Nanobioscience, 4(3), 228–234.

    Article  PubMed  Google Scholar 

  • Duque, C., Bonilla, A., Bautista, E., & Zea, S. (2001). Exudation of low molecular weight compounds (thiobismethane, methyl isocyanide, and methyl isothiocianate) as possible chemical defense mechanism in the marine sponge ircinia felix. Biochemical Systematics and Ecology, 29, 459–467.

    CAS  Article  PubMed  Google Scholar 

  • El-Sayed A (2012) The pherobase: Database of pheromones and semiochemicals. www.pherobase.com. Accessed 10 May 2013.

  • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389–422.

    Article  Google Scholar 

  • Humphris, S., Bruce, A., Buultjens, E., & Wheatly, R. (2002). The effects of volatile microbial secondary metabolites on protein synthesis in serpula lacrymans. FEMS Microbiology Letters, 210, 215–219.

    CAS  Article  PubMed  Google Scholar 

  • Ireland, C., Copp, B., Foster, M. P., McDonald, L., Radisky, D., & Swersey, J. (2000). Bioactive compounds from the sea. In R. E. Martin, E. P. Carter, & L. M. Davis (Eds.), Marine and freshwater products handbook. Lancaster: Technomic Publishing.

    Google Scholar 

  • Mangano, S., Michaud, L., Caruso, C., Brilli, M., Bruni, V., Fani, R., et al. (2009). Antagonistic interactions among psychrotrophic cultivable bacteria isolated from antarctic sponges: A preliminary analysis. Research in Microbiology, 160, 27–37.

    CAS  Article  PubMed  Google Scholar 

  • Massart, D., Vandeginste, B., Buydens, L., Smeyers-Verbeke, J., & De Jong, S. (1997). Handbook of chemometrics and qualimetrics: Part A. Amsterdam: Elsevier.

    Google Scholar 

  • Papaleo, M., Fondi, M., Maida, I., Perrin, E., Giudice, A. L., Michaud, L., et al. (2012). Sponge-associated microbial antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30, 272–293.

    CAS  Article  PubMed  Google Scholar 

  • Papaleo, M. C., Perrin, E., Maida, I., Fondi, M., Fani, R., & Vandamme, P. (2010). Identification of species of the Burkholderia cepacia complex by sequence analysis of the hisA gene. Journal of Medical Microbiology, 59, 1163–1170.

    CAS  Article  PubMed  Google Scholar 

  • Pawliszyn, J. (1997). Solid phase microextraction theory and practice. New York: Wiley.

    Google Scholar 

  • Pugliese, C., Sirtori, F., Calamai, L., & Franci, O. (2010). The evolution of volatile compounds profile of “toscano” dry-cured ham during ripening as revealed by SPME–GC–MS approach. Journal of Mass Spectrometry, 45, 1056–1064.

    CAS  Article  PubMed  Google Scholar 

  • Rivers, J., Pleil, J., & Wiener, J. (1992). Detection and characterization of volatile organic compounds produced by indoor air bacteria. Journal of Exposure Analysis and Environmental Epidemiology, suppl.1, 177–188.

    Google Scholar 

  • Romoli, R., Papaleo, M. C., de Pascale, D., Tutino, M. L., Michaud, L., LoGiudice, A., et al. (2011). Characterization of the volatile profile of antarctic bacteria by using solid-phase microextraction–gas chromatography–mass spectrometry. Journal of Mass Spectrometry, 46, 1051–1059.

    CAS  Article  PubMed  Google Scholar 

  • Selvin, J., Shanmughapriya, S., Ravji, S. G. G. K. T., & Hema, K. N. T. (2009). Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes nocardiopsis dassonvillei MAD08. Applied Microbiology Biotechnology, 83, 435–445.

    CAS  Article  PubMed  Google Scholar 

  • Stein, S. (1999). An integrated method for spectrum extraction and compound identification from GC/MS data. Journal of the American Society of Mass Spectrometry, 10, 770–781.

    CAS  Article  Google Scholar 

  • Sunesson, A., Nilsson, C. A., Carlson, R., Blomquist, G., & Andersson, B. (1997). Influence of temperature, oxygen and carbon dioxide levels on the production of volatile metabolites from Streptomyces albidoflavus cultivated on gypsum board and tryptone glucose extract agar. Annals of Occupational Hygiene, 41, 393–413.

    CAS  Article  Google Scholar 

  • R Development Core Team, (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/, ISBN 3-900051-07-0.

  • Varmuza, K. (1998). Encyclopedia of Computational Chemistry. Chichester: Wiley.

    Google Scholar 

  • Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics. Boca Raton: CRC Press (Taylor and Francis Group).

    Book  Google Scholar 

  • Vining, L. (1990). Functions of secondary metabolites. Annual Reviews of Microbiology, 44, 395–427.

    CAS  Article  Google Scholar 

  • Wheatley, R. (2002). The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek, 81, 357–364.

    CAS  Article  PubMed  Google Scholar 

  • Wilkins, K., Larsen, K., & Simkus, M. (2000). Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere, 41, 437–446.

    CAS  Article  PubMed  Google Scholar 

  • Zhang, L., Parente, J., & Harris, S. (2005). Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrobial Agents and Chemotherapy, 49, 2921–2927.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Ente Cassa di Risparmio di Firenze (Grant # 2008.1103) and Italian Cystic Fibrosis Research Foundation (Grant #12/2011). A very special thanks to Prof. Luca Calamai for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Romoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romoli, R., Papaleo, M.C., De Pascale, D. et al. GC–MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10, 42–51 (2014). https://doi.org/10.1007/s11306-013-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0549-2

Keywords

  • Chemical communication
  • Sample preparation
  • Statistical analysis
  • Microbiological techniques
  • Genetic disease
  • Cystic fibrosis