Advertisement

Metabolomics

, Volume 9, Issue 6, pp 1192–1201 | Cite as

Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography–ion mobility–mass spectrometry

  • Aditya Malkar
  • Neil A. Devenport
  • Helen J. Martin
  • Pareen Patel
  • Matthew A. Turner
  • Phillip Watson
  • Ronald J. Maughan
  • Helen J. Reid
  • Barry L. Sharp
  • C. L. Paul Thomas
  • James C. Reynolds
  • Colin S. CreaserEmail author
Original Article

ABSTRACT

A method has been developed for metabolite profiling of the salivary metabolome based on protein precipitation and ultra-high performance liquid chromatography coupled with ion mobility-mass spectrometry (UHPLC–IM–MS). The developed method requires 0.5 mL of human saliva, which is easily obtainable by passive drool. Standard protocols have been established for the collection, storage and pre-treatment of saliva. The use of UHPLC allows rapid global metabolic profiling for biomarker discovery with a cycle time of 15 min. Mass spectrometry imparts the ability to analyse a diverse number of species reproducibly over a wide dynamic range, which is essential for profiling of biofluids. The combination of UHPLC with IM–MS provides an added dimension enabling complex metabolic samples to be separated on the basis of retention time, ion mobility and mass-to-charge ratio in a single chromatographic run. The developed method has been applied to targeted metabolite identification and untargeted metabolite profiling of saliva samples collected before and after exercise-induced physiological stress. δ-Valerolactam has been identified as a potential biomarker on the basis of retention time, MS/MS spectrum and ion mobility drift time.

Keywords

Metabolite Profiling UHPLC Ion mobility Mass Spectrometry Saliva Physiological Stress Exercise δ-Valerolactam 

Notes

Acknowledgments

The authors would like to thank Jayne Kirk and Waters Corporation for the help with the software. Authors would like to thank Robert Smith for his input to identification of metabolite and Daniel Weston at AstraZeneca for providing accurate mass data.

Supplementary material

11306_2013_541_MOESM1_ESM.pptx (306 kb)
Supplementary material 1 (PPTX 306 kb)

References

  1. Aimetti, M., Cacciatore, S., Graziano, A., & Tenori, L. (2011). Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics, 8, 465–474.CrossRefGoogle Scholar
  2. Álvarez-Sánchez, B., Priego-Capote, F., & Luque de Castro, M. D. (2012). Study of sample preparation for metabolomic profiling of human saliva by liquid chromatography-time of flight/mass spectrometry. Journal of Chromatography A, 1248, 178–181.CrossRefPubMedGoogle Scholar
  3. Callery, P. S., & Geelhaar, L. A. (1984). Biosynthesis of 5-aminopentanoic acid and 2-piperidone from cadaverine and 1-piperideine in mouse. Journal of Neurochemistry, 43, 1631–1634.CrossRefPubMedGoogle Scholar
  4. Chiappin, S., Antonelli, G., Gatti, R., & De Palo, E. F. (2007). Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clinica Chimica Acta, 383, 30–40.CrossRefGoogle Scholar
  5. Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48, 323–327.CrossRefPubMedGoogle Scholar
  6. Creaser, C. S., Griffiths, J. R., Bramwell, C. J., Noreen, S., Hill, C., et al. (2004). Ion mobility spectrometry: A review. Part 1. Structural analysis by mobility measurement. The Analyst, 129, 984.CrossRefGoogle Scholar
  7. De Almeida, P. V., Gregio, A. M. T., Machado, M. A. N., De Lima, A. A. S., & Azevedo, L. R. (2008). Saliva composition and functions: a comprehensive review. Journal of Contemporary Dental Practice, 9, 72–80.Google Scholar
  8. Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2007). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4, 63–80.CrossRefGoogle Scholar
  9. Fonville, J. M., Richards, S. E., Barton, R. H., Boulange, C. L., Ebbels, T. M. D., Nicholson, J. K., et al. (2010). The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping. Journal of Chemometrics, 24, 636–649.CrossRefGoogle Scholar
  10. Harry, E. L., Weston, D. J., Bristow, A. W. T., Wilson, I. D., & Creaser, C. S. (2008). An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. Journal of chromatography B, 871, 357–361.CrossRefGoogle Scholar
  11. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: normal composition, flow, and function. The Journal of prosthetic dentistry, 85, 162–169.CrossRefPubMedGoogle Scholar
  12. Issaq, H. J., Abbott, E., & Veenstra, T. D. (2008). Utility of separation science in metabolomic studies. Journal of Separation Science, 31, 1936–1947.CrossRefPubMedGoogle Scholar
  13. Kanu, A. B., Dwivedi, P., Tam, M., Matz, L., & Herbert, H. H, Jr. (2008). Special feature: ion mobility–mass spectrometry. Journal of Mass Spectrometry, 43, 1–22.CrossRefPubMedGoogle Scholar
  14. Lindon, J. C., & Nicholson, J. K. (2008). Systems biology metabonomics. Nature, 455, 1054–1056.CrossRefPubMedGoogle Scholar
  15. Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.CrossRefPubMedGoogle Scholar
  16. Pink, R., Simek, J., Vondrakova, J., Faber, E., Michl, P., Pazdera, J., et al. (2009). Saliva as a diagnostic medium. Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 153, 103–110.CrossRefPubMedGoogle Scholar
  17. Polson, C., Sarkar, P., Incledon, B., Raguvaran, V., & Grant, R. (2003). Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 785, 263–275.CrossRefGoogle Scholar
  18. Shvartsburg, A. A., & Smith, R. D. (2008). Fundamentals of traveling wave ion mobility spectrometry. Analytical Chemistry, 80, 9689–9699.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Swartz, M. E. (2005). UPLC™ : An Introduction and Review. Journal of Liquid Chromatography & Related Technologies, 28, 1253–1263.CrossRefGoogle Scholar
  20. Takeda, I., Stretch, C., Barnaby, P., Bhatnager, K., Rankin, K., Fu, H., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22, 577–584.CrossRefPubMedGoogle Scholar
  21. Van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & Van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC genomics, 7, 142.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Walsh, L. J. (2007). Clinical aspects of salivary biology for the dental clinician. International Dentistry South Africa (Australasian Edition), 2, 16–30.Google Scholar
  23. Want, E. J., Wilson, I. D., Gik, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC–MS. Nature Protocols, 5, 1005–1018.CrossRefPubMedGoogle Scholar
  24. Wei, J., Xie, G., Zhou, Z., Shi, P., Qiu, Y., Zheng, X., et al. (2010). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129, 2207–2217.CrossRefGoogle Scholar
  25. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.CrossRefPubMedGoogle Scholar
  26. Xiayan, L., & Legido-Quigley, C. (2008). Advances in separation science applied to metabonomics. Electrophoresis, 29, 3724–3736.CrossRefPubMedGoogle Scholar
  27. Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Recent and potential developments of biofluid analyses in metabolomics. Journal of Proteomics, 75, 1079–1088.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aditya Malkar
    • 1
  • Neil A. Devenport
    • 1
  • Helen J. Martin
    • 1
  • Pareen Patel
    • 1
  • Matthew A. Turner
    • 1
  • Phillip Watson
    • 2
  • Ronald J. Maughan
    • 2
  • Helen J. Reid
    • 1
  • Barry L. Sharp
    • 1
  • C. L. Paul Thomas
    • 1
  • James C. Reynolds
    • 1
  • Colin S. Creaser
    • 1
    Email author
  1. 1.Department of ChemistryCentre for Analytical Science, Loughborough UniversityLeicestershireUK
  2. 2.School of Sport, Exercise and Health Sciences, Loughborough UniversityLeicestershireUK

Personalised recommendations