Metabolomics

, Volume 9, Issue 5, pp 1073–1081 | Cite as

Patterns of time since last meal revealed by sparse PCA in an observational LC–MS based metabolomics study

  • Gözde Gürdeniz
  • Louise Hansen
  • Morten Arendt Rasmussen
  • Evrim Acar
  • Anja Olsen
  • Jane Christensen
  • Thaer Barri
  • Anne Tjønneland
  • Lars Ove Dragsted
Original Article

Abstract

In metabolomics studies, liquid chromatography mass spectrometry (LC–MS) provides comprehensive information on biological samples. However, extraction of few relevant metabolites from this large and complex data is cumbersome. To resolve this issue, we have employed sparse principal component analysis (SPCA) to capture the underlying patterns and select relevant metabolites from LC–MS plasma profiles. The study involves a small pilot cohort with 270 subjects where each subject’s time since last meal (TSLM) has been recorded prior to plasma sampling. Our results have demonstrated that both PCA and SPCA can capture the TSLM patterns. Nevertheless, SPCA provides more easily interpretable loadings in terms of selection of relevant metabolites, which are identified as amino acids and lyso-lipids. This study demonstrates the utility of SPCA as a pattern recognition and variable selection tool in metabolomics. Furthermore, amino acids and lyso-lipids are determined as dominating compounds in response to TSLM.

Keywords

Metabolomics SPCA LC–MS Plasma Time since last meal Observational study 

Supplementary material

11306_2013_525_MOESM1_ESM.docx (266 kb)
Supplementary material 1 (DOCX 265 kb)

References

  1. Acar, E., Gurdeniz, G., Rasmussen, M. A., Rago, D., Dragsted, L. O., & Bro, R. (2012). Coupled matrix factorization with sparse factors to identify potential biomarkers in metabolomics. Proceedings of the 2012 IEEE International Conference on Data Mining Workshops, pp. 1–8.Google Scholar
  2. Allen, G. I., & Maletic-Savatic, M. (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27, 3029–3035.PubMedCrossRefGoogle Scholar
  3. Barber, M. N., Risis, S., Yang, C., Meikle, P. J., Staples, M., Febbraio, M. A., et al. (2012). Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes. PLoS ONE, 7, e41456.PubMedCrossRefGoogle Scholar
  4. Barri, T., Holmer-Jensenb, J., Hermansen, K., & Dragsted, L. O. (2012). Metabolic fingerprinting of high-fat plasma samples processed by centrifugation and filtration-based protein precipitation delineates significant differences in metabolite information coverage. Analytica Chimica Acta, 718, 47–57.PubMedCrossRefGoogle Scholar
  5. Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Analytical Chemistry, 78, 567–574.PubMedCrossRefGoogle Scholar
  6. Boirie, Y., Dangin, M., Gachon, P., Vasson, M. P., Maubois, J. L., & Beaufrere, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94, 14930–14935.PubMedCrossRefGoogle Scholar
  7. Chun, H., & Keles, S. (2010). Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 72, 3–25.PubMedCrossRefGoogle Scholar
  8. Fukagawa, N. K., Minaker, K. L., Rowe, J. W., Goodman, M. N., Matthews, D. E., Bier, D. M., et al. (1985). Insulin-mediated reduction of whole-body protein breakdown—Dose-response effects on leucine metabolism in post-absorptive men. Journal of Clinical Investigation, 76, 2306–2311.PubMedCrossRefGoogle Scholar
  9. Grata, E., Boccard, J., Guillarme, D., Glauser, G., Carrupt, P. A., Farmer, E. E., et al. (2008). UPLC-TOF-MS for plant metabolomics: a sequential approach for wound marker analysis in Arabidopsis thaliana. Journal of Chromatography B, 871, 261–270.CrossRefGoogle Scholar
  10. Gürdeniz, G., Kristensen, M., Skov, T., & Dragsted, L. O. (2012). The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in Fed versus fasted rats. Metabolites, 2, 77–99.CrossRefGoogle Scholar
  11. Han, M. S., Lim, Y. M., Quan, W., Kim, J. R., Chung, K. W., Kang, M., et al. (2011). Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. Journal of Lipid Research, 52, 1234–1246.PubMedCrossRefGoogle Scholar
  12. Krug, S., Kastenmuller, G., Stuckler, F., Rist, M. J., Skurk, T., Sailer, M., et al. (2012). The dynamic range of the human metabolome revealed by challenges. FASEB Journal, 26, 2607–2619.PubMedCrossRefGoogle Scholar
  13. Makide, K., Kitamura, H., Sato, Y., Okutani, M., & Aoki, J. (2009). Emerging lysophospholipid mediators, lysophosphatidylserine, lysophosphatidylthreonine, lysophosphatidylethanolamine and lysophosphatidylglycerol. Prostaglandins and Other Lipid Mediators, 89, 135–139.PubMedCrossRefGoogle Scholar
  14. Pellis, L., van Erk, M. J., van Ommen, B., Bakker, G. C. M., Hendriks, H. F. J., Cnubben, N. H. P., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics, 8, 347–359.PubMedCrossRefGoogle Scholar
  15. Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.PubMedCrossRefGoogle Scholar
  16. Rasmussen, M. A., & Bro, R. (2012). A tutorial on the Lasso approach to sparse modeling. Chemometrics and Intelligent Laboratory Systems, 119, 21–31.CrossRefGoogle Scholar
  17. Rubio-Aliaga, I., de Roos, B., Duthie, S. J., Crosley, L. K., Mayer, C., Horgan, G., et al. (2011). Metabolomics of prolonged fasting in humans reveals new catabolic markers. Metabolomics, 7, 375–387.CrossRefGoogle Scholar
  18. Schmitz, G., & Ruebsaamen, K. (2010). Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis, 208, 10–18.PubMedCrossRefGoogle Scholar
  19. Sekas, G., Patton, G. M., Lincoln, E. C., & Robins, S. J. (1985). Origin of plasma lysophosphatidylcholine: evidence for direct hepatic secretion in the rat. Journal of Laboratory and Clinical Medicine, 105, 190–194.PubMedGoogle Scholar
  20. Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan, R. S., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4, 214.PubMedCrossRefGoogle Scholar
  21. Shen, H., & Huang, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. Journal of Multivariate Analysis, 99(6), 1015–1034.CrossRefGoogle Scholar
  22. Tjonneland, A., Olsen, A., Boll, K., Stripp, C., Christensen, J., Engholm, G., et al. (2007). Study design, exposure variables, and socioeconomic determinants of participation in Diet, Cancer and Health: a population-based prospective cohort study of 57,053 men and women in Denmark. Scandinavian Journal of Public Health, 35, 432–441.PubMedCrossRefGoogle Scholar
  23. Van, D. K., Wilderjans, T. F., van den Berg, R. A., Antoniadis, A., & Van, M. I. (2011). A flexible framework for sparse simultaneous component based data integration. BMC Bioinformatics, 12, 448.CrossRefGoogle Scholar
  24. Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., et al. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17, 448–453.PubMedCrossRefGoogle Scholar
  25. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.CrossRefGoogle Scholar
  26. Wurtman, R. J., Rose, C. M., Chou, C., & Larin, F. F. (1968). Daily rhythms in the concentrations of various amino acids in human plasma. New England Journal of Medicine, 279, 171–175.PubMedCrossRefGoogle Scholar
  27. Zhao, X., Peter, A., Fritsche, J., Elcnerova, M., Fritsche, A., Haring, H. U., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: is there more than glucose to look at? American Journal of Physiology–Endocrinology and Metabolism, 296, E384–E393.PubMedCrossRefGoogle Scholar
  28. Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15, 265–286.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gözde Gürdeniz
    • 1
  • Louise Hansen
    • 2
  • Morten Arendt Rasmussen
    • 3
  • Evrim Acar
    • 3
  • Anja Olsen
    • 2
  • Jane Christensen
    • 2
  • Thaer Barri
    • 1
  • Anne Tjønneland
    • 2
  • Lars Ove Dragsted
    • 1
  1. 1.Department of Nutrition, Exercise and Sports, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.Danish Cancer Society Research CenterCopenhagenDenmark
  3. 3.Department of Food Science, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations