Skip to main content

Advertisement

Log in

A proton nuclear magnetic resonance-based metabolomic approach in IgA nephropathy urinary profiles

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. Both one-dimensional NOESY and transverse-relaxation filter CPMG NMR spectra were recorded to investigate the urine metabolome of 24 IgAN patients and to detect altered metabolic profiles in comparison with 68 healthy matched controls. The spectral data were analyzed using multivariate statistical techniques. The analysis revealed that the NMR spectra of IgAN patients were statistically different from those of the controls (P = 4 × 10−7 for 1D-NOESY and P = 2 × 10−7 for CPMG). The robustness of the determined statistical model was confirmed by its predictive performance (for the 1D-NOESY dataset: sensitivity = 67 %, specificity = 95 %; for the CPMG dataset sensitivity = 60 %, specificity = 94 %). For the first time we found metabolites, including betaine and citrate, that are differentially modulated in IgAN patients compared to controls and that may be directly involved in the pathogenesis of IgAN. These metabolites may influence, directly or indirectly, the TNF-α, a regulating factor of the Th1/Th2 cell balance that is relevant in the pathology. The involvement of metabolites such as betaine and citrate in TNF-α regulation supports the power of the identified metabolic profiles to discern IgAN from controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CA:

Canonical analysis

CPMG:

Carr–Purcell–Meiboom–Gill spin-echo sequence

IgAN:

IgA nephropathy

IPA:

Ingenuity pathway analysis

MANOVA:

Multivariate analysis of variance

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear overhauser effect spectroscopy

PC:

Principal component

PCA:

Principal component analysis

TNF-α:

Tumor necrosis factor alpha

References

  • Allen, A. C., Harper, S. J., & Feehally, J. (1995). Galactosylation of N- and O-linked carbohydrate moieties of IgA1 and IgG in IgA nephropathy. Clinical and Experimental Immunology, 100, 470–474.

    Article  PubMed  CAS  Google Scholar 

  • Altman, D. G. (1991). Practical statistics for medical research. London: Chapman & Hall/CRC.

    Google Scholar 

  • Bell, J. D., Lee, J. A., Lee, H. A., Sadler, P. J., Wilkie, D. R., & Woodham, R. H. (1991). Nuclear magnetic resonance studies of blood plasma and urine from subjects with chronic renal failure: Identification of trimethylamine-N-oxide. Biochimica et Biophysica Acta (BBA), 1096, 101–107.

    Article  CAS  Google Scholar 

  • Bollard, M. E., Holmes, E., Lindon, J. C., Mitchell, S. C., Branstetter, D., Zhang, W., et al. (2001). Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high-resolution 1H NMR spectroscopy of urine and pattern recognition. Analytical Biochemistry, 295, 194–202.

    Article  PubMed  CAS  Google Scholar 

  • Bollard, M. E., Stanley, E. G., Lindon, J. C., Nicholson, J. K., & Holmes, E. (2005). NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR in Biomedicine, 18, 143–162.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, S. T. (1995). Betaines: Their significance for bacteria and the renal tract. Clinical Science (London), 88, 25–27.

    CAS  Google Scholar 

  • Christians, U., Schmitz, V., Schoning, W., Bendrick-Peart, J., Klawitter, J., & Haschke, M. (2008). Toxicodynamic therapeutic drug monitoring of immunosuppressants: Promises, reality, and challenges. Therapeutic Drug Monitoring, 30, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, E., Evans, B. M., MacIntyre, I., & Milne, M. D. (1955). Acidosis in experimental electrolyte depletion. Clinical Science (London), 14, 421–440.

    CAS  Google Scholar 

  • Cox, S. N., Sallustio, F., Serino, G., Pontrelli, P., Verrienti, R., Pesce, F., et al. (2010). Altered modulation of WNT-beta-catenin and PI3 K/Akt pathways in IgA nephropathy. Kidney International, 78, 396–407.

    Article  PubMed  CAS  Google Scholar 

  • Gartland, K. P., Bonner, F. W., & Nicholson, J. K. (1989). Investigations into the biochemical effects of region-specific nephrotoxins. Molecular Pharmacology, 35, 242–250.

    PubMed  CAS  Google Scholar 

  • Grunfeld, C., Soued, M., Adi, S., Moser, A. H., Fiers, W., Dinarello, C. A., et al. (1991). Interleukin 4 inhibits stimulation of hepatic lipogenesis by tumor necrosis factor, interleukin 1, and interleukin 6 but not by interferon-alpha. Cancer Research, 1(51), 2803–2807.

    Google Scholar 

  • Grunfeld, C., Verdier, J. A., Neese, R., Moser, A. H., & Feingold, K. R. (1988). Mechanisms by which tumor necrosis factor stimulates hepatic fatty acid synthesis in vivo. Journal of Lipid Research, 29, 1327–1335.

    PubMed  CAS  Google Scholar 

  • Grunfeld, C., Zhao, C., Fuller, J., Pollack, A., Moser, A., Friedman, J., et al. (1996). Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. Journal of Clinical Investigation, 97, 2152–2157.

    Article  PubMed  CAS  Google Scholar 

  • Hongchang, G., Baijun, D., Liu, X., Xuan, H., Huang, Y., & Lin, D. (2008). Metabonomic profiling of renal cell carcinoma: High-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chimica Acta, 624, 269–277.

    Article  Google Scholar 

  • Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.

    Book  Google Scholar 

  • Kwon do, Y., Jung, Y. S., Kim, S. J., Park, H. K., Park, J. H., & Kim, Y. C. (2009). Impaired sulfur-amino acid metabolism and oxidative stress in nonalcoholic fatty liver are alleviated by betaine supplementation in rats. Journal of Nutrition, 139, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Lever, M., Sizeland, P. C. B., Bason, L. M., Hayman, C. M., & Chambers, S. T. (1994). Glycine betaine and proline betaine in human blood and urine. Biochimica et Biophysica Acta, 1200(3), 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Holmes, E. (2007). The handbook of metabonomics and metabolomics. Amsterdam: Elsevier.

    Google Scholar 

  • Lundina, T. A., Knubovets, T. L., Sedov, K. R., Markova, S. A., & Sibeldin, L. A. (1993). Variability of kidney tubular interstitial distortions in glomerulonephritis as measured by 1H-NMR urinalysis. Clinica Chimica Acta, 214, 165–173.

    Article  CAS  Google Scholar 

  • MacIntyre, D. A., Jimenez, B., Jantus Lewintre, E., Reinoso Martin, C., Schafer, H., Garcia Ballesteros, C., et al. (2010). Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia, 24, 788–797.

    Article  PubMed  CAS  Google Scholar 

  • Makinen, V. P., Soininen, P., Forsblom, C., Parkkonen, M., Ingman, P., Kaski, K., et al. (2006). Diagnosing diabetic nephropathy by 1H NMR metabonomics of serum. Magnetic Resonance Materials in Physics, Biology and Medicine, 19, 281–296.

    Article  CAS  Google Scholar 

  • Manno, C., Strippoli, G. F., D’Altri, C., Torres, D., Rossini, M., & Schena, F. P. (2007). A novel simpler histological classification for renal survival in IgA nephropathy: A retrospective study. American Journal of Kidney Diseases, 49, 763–775.

    Article  PubMed  Google Scholar 

  • Melnick, J. Z., Preisig, P. A., Alpern, R. J., & Baum, M. (2000). Renal citrate metabolism and urinary citrate excretion in the infant rat. Kidney International, 57, 891–897.

    Article  PubMed  CAS  Google Scholar 

  • Morrissey, J. F., Ochoa, M., Lotspeich, W. D., & Waterhouse, C. (1962). Citrate excretion in renal tubular acidosis. Annals of Internal Medicine, 56, 697–698.

    Article  Google Scholar 

  • Napoli, C., Sperandio, N., Lawlor, R. T., Scarpa, A., Molinari, H., & Assfalg, M. (2012). Urine metabolic signature of pancreatic ductal adenocarcinoma by 1H nuclear magnetic resonance: Identification, mapping, and evolution. Journal of Proteome Research, 11, 1274–1283.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, A. W., Mortishire-Smith, R. J., & Nicholson, J. K. (2003). NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chemical Research in Toxicology, 16, 1395–1404.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11), 559–572.

    Article  Google Scholar 

  • Psihogios, N. G., Kalaitzidis, R. G., Dimou, S., Seferiadis, K. I., Siamopoulos, K. C., & Bairaktari, E. T. (2007). Evaluation of tubulointerstitial lesions’ severity in patients with glomerulonephritides: An NMR-based metabonomic study. Journal of Proteome Research, 6, 3760–3770.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, Y., Cai, G., Su, M., Chen, T., Liu, Y., Xu, Y., et al. (2010). Urinary metabonomic study on colorectal cancer. Journal of Proteome Research, 9, 1627–1634.

    Article  PubMed  CAS  Google Scholar 

  • Rencher, A. (2002). Methods of multivariate analysis (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Romick-Rosendale, L. E., Brunner, H. I., Bennett, M. R., Mina, R., Nelson, S., Petri, M., et al. (2011). Identification of urinary metabolites that distinguish membranous lupus nephritis from proliferative lupus nephritis and focal segmental glomerulosclerosis. Arthritis Research & Therapy, 13, 199–208.

    Article  Google Scholar 

  • Saude, E. J., Adamko, D., Rowe, B. H., Marrie, T., & Sykes, B. D. (2007). Variation of metabolites in normal human urine. Metabolomics, 3, 439–451.

    Article  CAS  Google Scholar 

  • Savorani, F., Tomasi, G., & Engelsen, S. B. (2010). icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance, 202, 190–202.

    Article  PubMed  CAS  Google Scholar 

  • Schena, F. P., & Coppo, R. (2005). IgA nephropathies. In A. M. Davison, E. Ritz, J. S. Cameron, & C. Winearls (Eds.), Oxford textbook of clinical nephrology (3rd ed., pp. 369–502). Oxford: University Press.

    Google Scholar 

  • Schena, F. P., & Pesce, F. (2009). Epidemiology and ancestral difference. In K. N. Lai (Ed.), Recent advances in IgA nephropathy (pp. 9–19). Hong Kong: World Scientific.

    Chapter  Google Scholar 

  • Serino, G., Sallustio, F., Cox, S. N., Pesce, F., & Schena, F. P. (2012). miR-148b modulates core 1, β1,3-galactosyltransferase 1 expression explaining the abnormal glycosylation process in IgA nephropathy. Journal of the American Society of Nephrology, 23, 814–824.

    Article  PubMed  CAS  Google Scholar 

  • So, T., Salek-Ardakani, S., Nakano, H., Ware, C. F., & Croft, M. (2004). TNF receptor-associated factor 5 limits the induction of Th2 immune responses. Journal of Immunology, 172, 4292–4297.

    CAS  Google Scholar 

  • Unwin, R. J., Capasso, G., & Shirley, D. G. (2004). An overview of divalent cation and citrate handling by the kidney. Nephron Physiology, 98, 15–20.

    Article  Google Scholar 

  • Walsh, M. C., Nugent, A., Brennan, L., & Gibney, M. J. (2008). Understanding the metabolome – challenges for metabolomics. Nutrition Bulletin, 33(4), 316–323.

    Article  Google Scholar 

  • Williams, R. E., Eyton-Jones, H. W., Farnworth, M. J., Gallagher, R., & Provan, W. M. (2002). Effect of intestinal microflora on the urinary metabolic profile of rats: A 1H-nuclear magnetic resonance spectroscopy study. Xenobiotica, 32, 783–794.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Miyamoto, N., Shibata, K., Valasek, M. A., Motoike, T., Kedzierski, R. M., et al. (2004). Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proceedings of the National Academy of Sciences of the United States of America, 101, 1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Zuppi, C., Messana, I., Forni, F., Rossi, C., Pennacchietti, L., Ferrari, F., et al. (1997). 1H-NMR spectra of normal urines: Reference ranges of the major metabolites. Clinica Chimica Acta, 265, 85–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the patients for their cooperation in this study. This work was supported by Regione Puglia (Grant BISIMANE Project 44/2008) and Ministero dell'Istruzione, dell'Università e della Ricerca (Grant FIRB CAROMIX RBAP11B2SX_008). Maintenance of the NMR spectrometer was funded in part by the Department of Biotechnology of the University of Verona.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Assfalg or Francesco P. Schena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Coco, L., Assfalg, M., D’Onofrio, M. et al. A proton nuclear magnetic resonance-based metabolomic approach in IgA nephropathy urinary profiles. Metabolomics 9, 740–751 (2013). https://doi.org/10.1007/s11306-012-0489-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0489-2

Keywords

Navigation