Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites

Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is potentially well placed to contribute to metabolomic analysis while bringing the added benefit of high resolution, label free imaging. The focused ion beams used to desorb species from the sample can be focused below 1 μm allowing chemical imaging on a sub-cellular scale. In this study we test the capability of ToF-SIMS to generate mass spectrometry and MSMS spectra from a set of standard metabolites that can be compared with open access metabolite databases containing ESI-CID MSMS spectra. The influence of the chemical environment, the matrix effect, on the observed mass spectra is assessed using a mixed metabolite sample and the data discussed in terms of compound identification and quantification. Radical ions and small fragment ions seem to be less sensitive to ion suppression or enhancement and may provide a route to quantification. Understanding such parameters will be key for the successful application of the technique for in situ metabolomics with ToF-SIMS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Armitage, E. G., et al. (2012). Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancer. Surface and Interface Analysis,. doi:10.1002/sia.5050.

    Google Scholar 

  2. Breitenstein, D., Rommel, C. E., Stolwijk, J., Wegener, J., & Hagenhoff, B. (2008). The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis. Applied Surface Science, 255, 1249–1256. doi:10.1002/anie.200604468.

    Article  CAS  Google Scholar 

  3. Brison, J., Benoit, D. S. W., Muramoto, S., Robinson, M., Stayton, P. S., & Castner, D. G. (2011). ToF-SIMS imaging and depth profiling of HeLa cells treated with bromodeoxyuridine. Surface and Interface Analysis, 43, 354–357. doi:10.1002/sia.3415.

    PubMed  Article  CAS  Google Scholar 

  4. Brunelle, A., Touboul, D., & Laprévote, O. (2005). Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. Journal of Mass Spectrometry, 40, 985–999. doi:10.1002/jms.902.

    PubMed  Article  CAS  Google Scholar 

  5. Cappiello, A., Famiglini, G., Palma, P., Pierini, E., Termopoli, V., & Trufelli, H. (2010). Direct-EI in LC–MS: Towards a universal detector for small-molecule applications. Mass Spectrometry Reviews, 30, 1242–1255. doi:10.1002/mas.20329.

    Article  Google Scholar 

  6. Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry, 69, 4751–4760. doi:10.1021/ac970888i.

    PubMed  Article  CAS  Google Scholar 

  7. Carado, A., Passarelli, M. K., Kozole, J., Wingate, J. E., Winograd, N., & Loboda, A. V. (2008). C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Analytical Chemistry, 80, 7921–7929. doi:10.1021/ac801712s.

    PubMed  Article  CAS  Google Scholar 

  8. Davies, N., Weibel, D. E., Blenkinsopp, P., Lockyer, N., Hill, R., & Vickerman, J. C. (2003). Development and experimental application of a gold liquid metal ion source. Applied Surface Science, 203–204, 223–227. doi:10.1016/S0169-4332(02)00631-1.

    Article  Google Scholar 

  9. Fiehn, O., et al. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3, 175–178. doi:10.1007/s11306-007-0070-6.

    Article  CAS  Google Scholar 

  10. Fletcher, J. S. (2009). Cellular imaging with secondary ion mass spectrometry. Analyst, 134, 2204–2215. doi:10.1039/b913575h.

    PubMed  Article  CAS  Google Scholar 

  11. Fletcher, J. S., Henderson, A., Biddulph, G. X., Vaidyanathan, S., Lockyer, N. P., & Vickerman, J. C. (2008a). Uncovering new challenges in bio-analysis with ToF-SIMS. Applied Surface Science, 255, 1264–1270. doi:10.1016/j.apsusc.2008.05.253.

    Article  CAS  Google Scholar 

  12. Fletcher, J. S., Lockyer, N. P., Vaidyanathan, S., & Vickerman, J. C. (2007). TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry, 79, 2199–2206. doi:10.1021/ac061370u.

    PubMed  Article  CAS  Google Scholar 

  13. Fletcher, J. S., Lockyer, N. P., & Vickerman, J. C. (2011). Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrometry Reviews, 30, 142–174. doi:10.1002/mas.20275.

    PubMed  Article  CAS  Google Scholar 

  14. Fletcher, J. S., et al. (2008b). A new dynamic in mass spectral imaging of single biological cells. Analytical Chemistry, 80, 9058–9064. doi:10.1021/ac8015278.

    PubMed  Article  CAS  Google Scholar 

  15. Garrison, B. J., & Postawa, Z. (2008). Computational view of surface based organic mass spectrometry. Mass Spectrometry Reviews, 27, 289–315. doi:10.1002/mas.20165.

    PubMed  Article  CAS  Google Scholar 

  16. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252. doi:10.1016/j.tibtech.2004.03.007.

    PubMed  Article  CAS  Google Scholar 

  17. Heinemann, M., & Zenobi, R. (2011). Single cell metabolomics. Current Opinion in Biotechnology, 22, 26–31. doi:10.1016/j.copbio.2010.09.008.

    PubMed  Article  CAS  Google Scholar 

  18. Horai, H., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45, 703–714. doi:10.1002/jms.1777.

    PubMed  Article  CAS  Google Scholar 

  19. Jones, E. A., Lockyer, N. P., & Vickerman, J. C. (2006). Suppression and enhancement of non-native molecules within biological systems. Applied Surface Science, 252, 6727–6730. doi:10.1016/j.apsusc.2006.02.158.

    Article  CAS  Google Scholar 

  20. Knochenmuss, R., & Zenobi, R. (2003). MALDI ionization: The role of in-plume processes. Chemical Reviews, 103, 441–452. doi:10.1021/cr0103773.

    PubMed  Article  CAS  Google Scholar 

  21. Kollmer, F. (2004). Cluster primary ion bombardment of organic materials. Applied Surface Science, 231, 153–158. doi:10.1016/j.apsusc.2004.03.101.

    Article  Google Scholar 

  22. Kopka, J., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638. doi:10.1093/bioinformatics/bti236.

    PubMed  Article  CAS  Google Scholar 

  23. Kotze, H. L., et al. (2012). ToF-SIMS as a tool for metabolic profiling small biomolecules in cancer systems. Surface and Interface Analysis,. doi:10.1002/sia.5055.

    Google Scholar 

  24. Leggett, G. J., & Vickerman, J. C. (1992). An empirical-model for ion formation from polymer surfaces during analysis by secondary ion mass-spectrometry. International Journal of Mass Spectrometry and Ion Processes, 122, 281–319. doi:10.1016/0168-1176(92)87021-6.

    Article  CAS  Google Scholar 

  25. MacAleese, L., Stauber, J., & Heeren, R. M. A. (2009). Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics, 9, 819–834. doi:10.1002/pmic.200800363.

    PubMed  Article  CAS  Google Scholar 

  26. McDonnell, L. A., Heeren, R. M. A., de Lange, R. P. J., & Fletcher, I. W. (2006). Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. Journal of the American Society for Mass Spectrometry, 17, 1195–1202. doi:10.1016/j.jasms.2006.05.003.

    PubMed  Article  CAS  Google Scholar 

  27. Mouhib, T., Delcorte, A., Poleunis, C., & Bertrand, P. (2010). Organic secondary ion mass spectrometry: Signal enhancement by water vapor injection. Journal of the American Society for Mass Spectrometry, 21, 2005–2010. doi:10.1016/j.jasms.2010.08.013.

    PubMed  Article  CAS  Google Scholar 

  28. Passarelli, M. K., & Winograd, N. (2011). Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1811, 976–990.

    Article  CAS  Google Scholar 

  29. Piwowar, A. M., Fletcher, J. S., Kordys, J., Lockyer, N. P., Winograd, N., & Vickerman, J. C. (2010). Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry. Analytical Chemistry, 82, 8291–8299. doi:10.1021/ac101746h.

    PubMed  Article  CAS  Google Scholar 

  30. Rubakhin, S. S., Romanova, E. V., Nemes, P., & Sweedler, J. V. (2011). Profiling metabolites and peptides in single cells. Nature Methods, 8, S20–S29. doi:10.1038/nmeth.1549.

    PubMed  Article  CAS  Google Scholar 

  31. Sabatine, M. S., et al. (2005). Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868–3875. doi:10.1161/circulationaha.105.569137.

    PubMed  Article  CAS  Google Scholar 

  32. Sjovall, P., Lausmaa, J., & Johansson, B. R. (2004). Mass spectrometric imaging of lipids in brain tissue. Analytical Chemistry, 76, 4271–4278. doi:10.1021/ac049389p.

    PubMed  Article  Google Scholar 

  33. Smith, D. F., Robinson, E. W., Tolmachev, A. V., Heeren, R. M. A., & Pasa-Tolic, L. (2011). C-60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 83, 9552–9556. doi:10.1021/ac2023348.

    PubMed  Article  CAS  Google Scholar 

  34. Smith, C. A., et al. (2005). METLIN—A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751. doi:10.1097/01.ftd.0000179845.53213.39.

    PubMed  Article  CAS  Google Scholar 

  35. Sreekumar, A., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914. doi:10.1038/nature07762.

    PubMed  Article  CAS  Google Scholar 

  36. Takáts, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471–473. doi:10.1126/science.1104404.

    PubMed  Article  Google Scholar 

  37. Vaidyanathan, S., Fletcher, J. S., Goodacre, R., Lockyer, N. P., Micklefield, J., & Vickerman, J. C. (2008). Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. Analytical Chemistry, 80, 1942–1951. doi:10.1021/ac701921e.

    PubMed  Article  CAS  Google Scholar 

  38. Vickerman, J. C. (2011). Molecular imaging and depth profiling by mass spectrometry-SIMS, MALDI or DESI? Analyst, 136, 2199–2217. doi:10.1039/C1AN00008J.

    PubMed  Article  CAS  Google Scholar 

  39. Vickerman, J. C., Briggs, D., & Henderson, A. (2006). The static SIMS library version 4. Manchester: Surfacespectra Ltd.

    Google Scholar 

  40. Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R., & Vickerman, J. C. (2003). A C60 primary ion beam system for time of flight secondary ion mass spectrometry: Its development and secondary ion yield characteristics. Analytical Chemistry, 75, 1754–1764. doi:10.1021/ac026338o.

    PubMed  Article  CAS  Google Scholar 

  41. Wishart, D. S., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi:10.1093/nar/gkl923.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council, EPSRC, UK under grants EP/C008251 and EP/G045623/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John S. Fletcher.

Additional information

John S. Fletcher, Helen L. Kotze, and Emily G. Armitage contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 637 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fletcher, J.S., Kotze, H.L., Armitage, E.G. et al. Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites. Metabolomics 9, 535–544 (2013). https://doi.org/10.1007/s11306-012-0487-4

Download citation

Keywords

  • Secondary ion mass spectrometry
  • ToF-SIMS
  • Metabolomics
  • Metabolite
  • MSMS
  • Matrix effects