, Volume 9, Issue 3, pp 535–544 | Cite as

Evaluating the challenges associated with time-of-fight secondary ion mass spectrometry for metabolomics using pure and mixed metabolites

  • John S. FletcherEmail author
  • Helen L. Kotze
  • Emily G. Armitage
  • Nicholas P. Lockyer
  • John C. Vickerman
Original Article


Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is potentially well placed to contribute to metabolomic analysis while bringing the added benefit of high resolution, label free imaging. The focused ion beams used to desorb species from the sample can be focused below 1 μm allowing chemical imaging on a sub-cellular scale. In this study we test the capability of ToF-SIMS to generate mass spectrometry and MSMS spectra from a set of standard metabolites that can be compared with open access metabolite databases containing ESI-CID MSMS spectra. The influence of the chemical environment, the matrix effect, on the observed mass spectra is assessed using a mixed metabolite sample and the data discussed in terms of compound identification and quantification. Radical ions and small fragment ions seem to be less sensitive to ion suppression or enhancement and may provide a route to quantification. Understanding such parameters will be key for the successful application of the technique for in situ metabolomics with ToF-SIMS.


Secondary ion mass spectrometry ToF-SIMS Metabolomics Metabolite MSMS Matrix effects 



The authors gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council, EPSRC, UK under grants EP/C008251 and EP/G045623/1.

Supplementary material

11306_2012_487_MOESM1_ESM.doc (637 kb)
Supplementary material 1 (DOC 637 kb)


  1. Armitage, E. G., et al. (2012). Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancer. Surface and Interface Analysis,. doi: 10.1002/sia.5050.Google Scholar
  2. Breitenstein, D., Rommel, C. E., Stolwijk, J., Wegener, J., & Hagenhoff, B. (2008). The chemical composition of animal cells reconstructed from 2D and 3D ToF-SIMS analysis. Applied Surface Science, 255, 1249–1256. doi: 10.1002/anie.200604468.CrossRefGoogle Scholar
  3. Brison, J., Benoit, D. S. W., Muramoto, S., Robinson, M., Stayton, P. S., & Castner, D. G. (2011). ToF-SIMS imaging and depth profiling of HeLa cells treated with bromodeoxyuridine. Surface and Interface Analysis, 43, 354–357. doi: 10.1002/sia.3415.PubMedCrossRefGoogle Scholar
  4. Brunelle, A., Touboul, D., & Laprévote, O. (2005). Biological tissue imaging with time-of-flight secondary ion mass spectrometry and cluster ion sources. Journal of Mass Spectrometry, 40, 985–999. doi: 10.1002/jms.902.PubMedCrossRefGoogle Scholar
  5. Cappiello, A., Famiglini, G., Palma, P., Pierini, E., Termopoli, V., & Trufelli, H. (2010). Direct-EI in LC–MS: Towards a universal detector for small-molecule applications. Mass Spectrometry Reviews, 30, 1242–1255. doi: 10.1002/mas.20329.CrossRefGoogle Scholar
  6. Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Analytical Chemistry, 69, 4751–4760. doi: 10.1021/ac970888i.PubMedCrossRefGoogle Scholar
  7. Carado, A., Passarelli, M. K., Kozole, J., Wingate, J. E., Winograd, N., & Loboda, A. V. (2008). C60 secondary ion mass spectrometry with a hybrid-quadrupole orthogonal time-of-flight mass spectrometer. Analytical Chemistry, 80, 7921–7929. doi: 10.1021/ac801712s.PubMedCrossRefGoogle Scholar
  8. Davies, N., Weibel, D. E., Blenkinsopp, P., Lockyer, N., Hill, R., & Vickerman, J. C. (2003). Development and experimental application of a gold liquid metal ion source. Applied Surface Science, 203–204, 223–227. doi: 10.1016/S0169-4332(02)00631-1.CrossRefGoogle Scholar
  9. Fiehn, O., et al. (2007). The metabolomics standards initiative (MSI). Metabolomics, 3, 175–178. doi: 10.1007/s11306-007-0070-6.CrossRefGoogle Scholar
  10. Fletcher, J. S. (2009). Cellular imaging with secondary ion mass spectrometry. Analyst, 134, 2204–2215. doi: 10.1039/b913575h.PubMedCrossRefGoogle Scholar
  11. Fletcher, J. S., Henderson, A., Biddulph, G. X., Vaidyanathan, S., Lockyer, N. P., & Vickerman, J. C. (2008a). Uncovering new challenges in bio-analysis with ToF-SIMS. Applied Surface Science, 255, 1264–1270. doi: 10.1016/j.apsusc.2008.05.253.CrossRefGoogle Scholar
  12. Fletcher, J. S., Lockyer, N. P., Vaidyanathan, S., & Vickerman, J. C. (2007). TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry, 79, 2199–2206. doi: 10.1021/ac061370u.PubMedCrossRefGoogle Scholar
  13. Fletcher, J. S., Lockyer, N. P., & Vickerman, J. C. (2011). Developments in molecular SIMS depth profiling and 3D imaging of biological systems using polyatomic primary ions. Mass Spectrometry Reviews, 30, 142–174. doi: 10.1002/mas.20275.PubMedCrossRefGoogle Scholar
  14. Fletcher, J. S., et al. (2008b). A new dynamic in mass spectral imaging of single biological cells. Analytical Chemistry, 80, 9058–9064. doi: 10.1021/ac8015278.PubMedCrossRefGoogle Scholar
  15. Garrison, B. J., & Postawa, Z. (2008). Computational view of surface based organic mass spectrometry. Mass Spectrometry Reviews, 27, 289–315. doi: 10.1002/mas.20165.PubMedCrossRefGoogle Scholar
  16. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252. doi: 10.1016/j.tibtech.2004.03.007.PubMedCrossRefGoogle Scholar
  17. Heinemann, M., & Zenobi, R. (2011). Single cell metabolomics. Current Opinion in Biotechnology, 22, 26–31. doi: 10.1016/j.copbio.2010.09.008.PubMedCrossRefGoogle Scholar
  18. Horai, H., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45, 703–714. doi: 10.1002/jms.1777.PubMedCrossRefGoogle Scholar
  19. Jones, E. A., Lockyer, N. P., & Vickerman, J. C. (2006). Suppression and enhancement of non-native molecules within biological systems. Applied Surface Science, 252, 6727–6730. doi: 10.1016/j.apsusc.2006.02.158.CrossRefGoogle Scholar
  20. Knochenmuss, R., & Zenobi, R. (2003). MALDI ionization: The role of in-plume processes. Chemical Reviews, 103, 441–452. doi: 10.1021/cr0103773.PubMedCrossRefGoogle Scholar
  21. Kollmer, F. (2004). Cluster primary ion bombardment of organic materials. Applied Surface Science, 231, 153–158. doi: 10.1016/j.apsusc.2004.03.101.CrossRefGoogle Scholar
  22. Kopka, J., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21, 1635–1638. doi: 10.1093/bioinformatics/bti236.PubMedCrossRefGoogle Scholar
  23. Kotze, H. L., et al. (2012). ToF-SIMS as a tool for metabolic profiling small biomolecules in cancer systems. Surface and Interface Analysis,. doi: 10.1002/sia.5055.Google Scholar
  24. Leggett, G. J., & Vickerman, J. C. (1992). An empirical-model for ion formation from polymer surfaces during analysis by secondary ion mass-spectrometry. International Journal of Mass Spectrometry and Ion Processes, 122, 281–319. doi: 10.1016/0168-1176(92)87021-6.CrossRefGoogle Scholar
  25. MacAleese, L., Stauber, J., & Heeren, R. M. A. (2009). Perspectives for imaging mass spectrometry in the proteomics landscape. Proteomics, 9, 819–834. doi: 10.1002/pmic.200800363.PubMedCrossRefGoogle Scholar
  26. McDonnell, L. A., Heeren, R. M. A., de Lange, R. P. J., & Fletcher, I. W. (2006). Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging. Journal of the American Society for Mass Spectrometry, 17, 1195–1202. doi: 10.1016/j.jasms.2006.05.003.PubMedCrossRefGoogle Scholar
  27. Mouhib, T., Delcorte, A., Poleunis, C., & Bertrand, P. (2010). Organic secondary ion mass spectrometry: Signal enhancement by water vapor injection. Journal of the American Society for Mass Spectrometry, 21, 2005–2010. doi: 10.1016/j.jasms.2010.08.013.PubMedCrossRefGoogle Scholar
  28. Passarelli, M. K., & Winograd, N. (2011). Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1811, 976–990.CrossRefGoogle Scholar
  29. Piwowar, A. M., Fletcher, J. S., Kordys, J., Lockyer, N. P., Winograd, N., & Vickerman, J. C. (2010). Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometry. Analytical Chemistry, 82, 8291–8299. doi: 10.1021/ac101746h.PubMedCrossRefGoogle Scholar
  30. Rubakhin, S. S., Romanova, E. V., Nemes, P., & Sweedler, J. V. (2011). Profiling metabolites and peptides in single cells. Nature Methods, 8, S20–S29. doi: 10.1038/nmeth.1549.PubMedCrossRefGoogle Scholar
  31. Sabatine, M. S., et al. (2005). Metabolomic identification of novel biomarkers of myocardial ischemia. Circulation, 112, 3868–3875. doi: 10.1161/circulationaha.105.569137.PubMedCrossRefGoogle Scholar
  32. Sjovall, P., Lausmaa, J., & Johansson, B. R. (2004). Mass spectrometric imaging of lipids in brain tissue. Analytical Chemistry, 76, 4271–4278. doi: 10.1021/ac049389p.PubMedCrossRefGoogle Scholar
  33. Smith, D. F., Robinson, E. W., Tolmachev, A. V., Heeren, R. M. A., & Pasa-Tolic, L. (2011). C-60 secondary ion Fourier transform ion cyclotron resonance mass spectrometry. Analytical Chemistry, 83, 9552–9556. doi: 10.1021/ac2023348.PubMedCrossRefGoogle Scholar
  34. Smith, C. A., et al. (2005). METLIN—A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751. doi: 10.1097/01.ftd.0000179845.53213.39.PubMedCrossRefGoogle Scholar
  35. Sreekumar, A., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914. doi: 10.1038/nature07762.PubMedCrossRefGoogle Scholar
  36. Takáts, Z., Wiseman, J. M., Gologan, B., & Cooks, R. G. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471–473. doi: 10.1126/science.1104404.PubMedCrossRefGoogle Scholar
  37. Vaidyanathan, S., Fletcher, J. S., Goodacre, R., Lockyer, N. P., Micklefield, J., & Vickerman, J. C. (2008). Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometry. Analytical Chemistry, 80, 1942–1951. doi: 10.1021/ac701921e.PubMedCrossRefGoogle Scholar
  38. Vickerman, J. C. (2011). Molecular imaging and depth profiling by mass spectrometry-SIMS, MALDI or DESI? Analyst, 136, 2199–2217. doi: 10.1039/C1AN00008J.PubMedCrossRefGoogle Scholar
  39. Vickerman, J. C., Briggs, D., & Henderson, A. (2006). The static SIMS library version 4. Manchester: Surfacespectra Ltd.Google Scholar
  40. Weibel, D., Wong, S., Lockyer, N., Blenkinsopp, P., Hill, R., & Vickerman, J. C. (2003). A C60 primary ion beam system for time of flight secondary ion mass spectrometry: Its development and secondary ion yield characteristics. Analytical Chemistry, 75, 1754–1764. doi: 10.1021/ac026338o.PubMedCrossRefGoogle Scholar
  41. Wishart, D. S., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526. doi: 10.1093/nar/gkl923.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • John S. Fletcher
    • 1
    Email author
  • Helen L. Kotze
    • 2
  • Emily G. Armitage
    • 2
  • Nicholas P. Lockyer
    • 3
  • John C. Vickerman
    • 2
  1. 1.Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
  2. 2.School of Chemical Engineering and Analytical ScienceUniversity of ManchesterManchesterUK
  3. 3.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations