Biochemical characterization of cultivated Cordyceps bassiana mycelia and fruiting bodies by 1H nuclear magnetic resonance spectroscopy

Abstract

In this study, nuclear magnetic resonance techniques coupled with multivariate data analysis were used for the metabolic profiling of mycelia and fruiting bodies of the entomopathogenic fungi, Cordyceps bassiana according to developmental stages. A direct extraction method using two deuterated solvents of D2O and CDCl3 was used to investigate the relative levels of identified metabolites in each extraction condition in the mycelium and fruiting body formation stages. There was a clear separation among mycelia and fruiting bodies with various developmental stages in partial least-squares discriminant analysis (PLS-DA) derived score plots. During the transition from mycelia to fruiting bodies, the major metabolic change observed was the conversion of glucose to mannitol, and beauvericin to phenylalanine and 1-hydroxyisovaleric acid. In the developmental stages of fruiting bodies studied, there was a clear separation between stage 3 and the other stages in PLS-DA derived score plots. Nineteen compounds including 13 amino acids, 2 nucleosides, 3 organic acids, and glucose showed the highest levels in stage 3 fruiting bodies. The flavonoid content in the fruiting bodies showed similar levels during stages 1, 2, and 3, whereas the level at stage 4 was significantly decreased compared to the other stages. Results suggest that the fruiting body of C. bassiana is richer in natural resources at stage 3 compared to the other fruiting body stages due to its high abundance of compounds including total flavonoids. The metabolome information acquired in this study can be useful criteria for the quality control of commercial use of C. bassiana.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173.

    Article  CAS  Google Scholar 

  2. Barros, L., Calhelha, R. C., Vaz, J. A., Ferreira, I. C. F. R., Baptista, P., & Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 225, 151–156.

    Article  CAS  Google Scholar 

  3. Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46, 2742–2747.

    PubMed  Article  CAS  Google Scholar 

  4. Benavente-Garcia, O., Castillo, J., Marin, F. R., Ortuño, A., & José, A. (1997). Uses and properties of citrus flavonoids. Journal of Agriculture and Food Chemistry, 45, 4505–4515.

    Article  CAS  Google Scholar 

  5. Byeon, S. E., Lee, S. Y., Kim, A. R., et al. (2011). Inhibition of cytokine expression by a butanol extract from Cordyceps bassiana. Pharmazie, 66, 58–62.

    PubMed  CAS  Google Scholar 

  6. Calo, L., Fornelli, F., Ramires, R., et al. (2004). Cytotoxic effects of the mycotoxin beauvericin to human cell lines of myeloid origin. Pharmacological Research, 49, 73–77.

    PubMed  Article  CAS  Google Scholar 

  7. Cannell, R. J., Rashid, T., Ismail, I., Sidebottom, P., Knaggs, A., & Marshall, P. (1997). Novel metabolites of warfarin produced by Beauveria bassiana and Streptomyces rimosus: A novel application of HPLC-NMR. Xenobiotica, 27, 147–157.

    PubMed  Article  CAS  Google Scholar 

  8. Choi, Y., Lee, S. M., Chun, J., Lee, H. B., & Lee, J. (2006). Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chemistry, 99, 381–387.

    Article  CAS  Google Scholar 

  9. Eley, K. L., Halo, L. M., Song, Z., et al. (2007). Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. European Journal of Chemical Biology, 8, 289–297.

    PubMed  CAS  Google Scholar 

  10. Ellis, F. W., & Krantz, J. C., Jr. (1941). Sugar alcohols XXII. Metabolism and toxicity studies with mannitol and sorbitol in man and animals. Journal of Biological Chemistry, 141, 147–154.

    CAS  Google Scholar 

  11. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wold, S., Trygg, J., & Wikström, C. (2006). Multi- and megavariate data analysis part I: Basic principles and applications (2nd ed.). Umea: Umetric Academy.

    Google Scholar 

  12. Garza-López, P. M., Konigsberg, M., Gómez-Quiroz, L. E., & Loera, O. (2011). Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World Journal of Microbiology and Biotechnology, 28, 1–7.

    Google Scholar 

  13. Gupta, S., Krasnoff, S. B., Underwood, N. L., Renwick, J. A. A., & Roberts, D. W. (1991). Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia, 115, 185–189.

    PubMed  Article  CAS  Google Scholar 

  14. Hammond, J. B. W., & Nichols, R. (1976). Carbohydrate metabolism in Agaricus bisporus (Lange) Sing: Changes in soluble carbohydrates during growth of mycelium and sporophore. Journal of General Microbiology, 93, 309–320.

    PubMed  Article  CAS  Google Scholar 

  15. Haskom, G., & Cronstein, B. N. (2004). Adenosine: An endogenous regulator of innate immunity. Trends in Immunology, 25, 33–39.

    Article  Google Scholar 

  16. Kanehisa Laboratories. (2012). KEGG Pathway Database. Retrieved Feb 9, 2012 from http://www.genome.jp/kegg/pathway.html.

  17. Kim, H. S., Park, S. J., Hyun, S. H., et al. (2011). Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems. Food Research International, 44, 1977–1987.

    Article  CAS  Google Scholar 

  18. Kim, Y., Park, Y. J., Yang, S. O., et al. (2010). Hypoxanthine levels in human urine serve as a screening indicator for the plasma total cholesterol and low-density lipoprotein modulation activities of fermented red pepper paste. Nutrition Research, 30, 455–461.

    PubMed  Article  CAS  Google Scholar 

  19. Lee, J. O., Shrestha, B., Kim, T. W., Sung, G. H., & Sung, J. M. (2007). Stable formation of fruiting body in Cordyceps bassiana. Mycobiology, 35, 230–234.

    Article  CAS  Google Scholar 

  20. Logrieco, A., Moretti, A., Ritieni, A., Caiaffa, M. F., & Macchia, L. (2002). Beauvericin: Chemistry, biology and significance. In U. Rajeev (Ed.), Advances in microbial toxin research and its biotechnological exploitation (pp. 23–30). New York: Kluwer Academic.

    Google Scholar 

  21. Molnár, I., Gibson, D. M., & Krasnoff, S. B. (2010). Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Products Reports, 27, 1241–1275.

    Article  Google Scholar 

  22. Namatame, I., Tomoda, H., Ishibashi, S., & Ōmura, S. (2004). Antiatherogenic activity of fungal beauveriolides, inhibitors of lipid droplet accumulation in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 101, 737–742.

    PubMed  Article  CAS  Google Scholar 

  23. Ohshiro, T., Rudel, L. L., Omura, S., & Tomoda, H. (2007). Selectivity of microbial acyl-CoA: Cholesterol acyltransferase inhibitors toward isozymes. Journal of Antibiotics, 60, 43–51.

    PubMed  Article  CAS  Google Scholar 

  24. Oller-López, J. L., Iranzo, M., Mormeneo, S., Oliver, E., Cuerva, J. M., & Oltra, J. E. (2005). Bassianolone: An antimicrobial precursor of cephalosporolides E and F from the entomoparasitic fungus Beauveria bassiana. Organic and Biomolecular Chemistry, 3, 1172–1173.

    PubMed  Article  Google Scholar 

  25. Quesada-Moraga, E., & Vey, A. (2004). Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycological Research, 108, 441–452.

    PubMed  Article  CAS  Google Scholar 

  26. Strasser, H., Vey, A., & Butt, T. M. (2000). Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Science and Technology, 10, 717–735.

    Article  Google Scholar 

  27. Sung, J. M., Lee, J. O., Humber, R. A., Sung, G. H., & Shrestha, B. (2006). Cordyceps bassiana and production of stromata in vitro showing Beauveria anamorph in Korea. Mycobiology, 34, 1–6.

    Article  Google Scholar 

  28. Tomoda, H., & Doi, T. (2007). Discovery and combinatorial synthesis of fungal metabolites beauveriolides, novel antiatherosclerotic agents. Accounts of Chemical Research, 41, 32–39.

    PubMed  Article  Google Scholar 

  29. Verpoorte, R., Choi, Y. H., & Kim, H. K. (2007). NMR-based metabolomics at work in phytochemistry. Phytochemistry Reviews, 6, 3–14.

    Article  CAS  Google Scholar 

  30. Vey, A., Hoagland, R. E., & Butt, T. M. (2001). Toxic metabolites of fungal biocontrol agents. In T. M. Butt, C. Jackson, & N. Magan (Eds.), Fungi as biocontrol agents. progress, problems, and potential (pp. 311–346). Oxford: CABI Publishing.

    Google Scholar 

  31. Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., et al. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.

    Article  CAS  Google Scholar 

  32. Wu, G., Li, L., Sung, G. H., et al. (2011). Inhibition of 2,4-dinitrofluorobenzene-induced atopic dermatitis by topical application of the butanol extract of Cordyceps bassiana in NC/Nga mice. Journal of Ethnopharmacology, 134, 504–509.

    PubMed  Article  Google Scholar 

  33. Xu, Y., Orozco, R., Kithsiri-Wijeratne, E. M., et al. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46, 353–364.

    PubMed  Article  CAS  Google Scholar 

  34. Zhan, J., Burns, A. M., Liu, M. X., Faeth, S. H., & Gunatilaka, A. A. L. (2007). Search for cell motility and angiogenesis inhibitors with potential anticancer activity: Beauvericin and other constituents of two endophytic strains of Fusarium oxysporum. Journal of Natural Products, 70, 227–232.

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ0081542011), Rural Development Administration, Republic of Korea and by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-C1ABA001-2011-0021047).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyung-Kyoon Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 169 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, S.J., Hyun, SH., Suh, H.W. et al. Biochemical characterization of cultivated Cordyceps bassiana mycelia and fruiting bodies by 1H nuclear magnetic resonance spectroscopy. Metabolomics 9, 236–246 (2013). https://doi.org/10.1007/s11306-012-0442-4

Download citation

Keywords

  • Cordyceps bassiana
  • Metabolomics
  • 1H-NMR
  • Artificial cultivation
  • Developmental stages