Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics

Abstract

Metabolomics has advanced significantly in the past 10 years with important developments related to hardware, software and methodologies and an increasing complexity of applications. In discovery-based investigations, applying untargeted analytical methods, thousands of metabolites can be detected with no or limited prior knowledge of the metabolite composition of samples. In these cases, metabolite identification is required following data acquisition and processing. Currently, the process of metabolite identification in untargeted metabolomic studies is a significant bottleneck in deriving biological knowledge from metabolomic studies. In this review we highlight the different traditional and emerging tools and strategies applied to identify subsets of metabolites detected in untargeted metabolomic studies applying various mass spectrometry platforms. We indicate the workflows which are routinely applied and highlight the current limitations which need to be overcome to provide efficient, accurate and robust identification of metabolites in untargeted metabolomic studies. These workflows apply to the identification of metabolites, for which the structure can be assigned based on entries in databases, and for those which are not yet stored in databases and which require a de novo structure elucidation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. An, Z., Chen, Y., Zhang, R., Song, Y., Sun, J., He, J., et al. (2010). Integrated ionization approach for RRLC-MS/MS-based metabonomics: Finding potential biomarkers for lung cancer. Journal of Proteome Research, 9(8), 4071–4081.

    PubMed  CAS  Google Scholar 

  2. Beckmann, M., Parker, D., Enot, D. P., Duval, E., & Draper, J. (2008). High-throughput, nontargeted metabolite fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nature Protocols, 3(3), 486–504.

    PubMed  CAS  Google Scholar 

  3. Bird, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. K., & Kristal, B. S. (2011). Serum lipidomics profiling using LC-MS and high-energy collisional dissociation fragmentation: Focus on triglyceride detection and characterization. Analytical Chemistry, 83(17), 6648–6657.

    PubMed  CAS  Google Scholar 

  4. Birkemeyer, C., Kolasa, A., & Kopka, J. (2003). Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. Journal of Chromatography A, 993(1–2), 89–102.

    PubMed  CAS  Google Scholar 

  5. Birkemeyer, C., Luedemann, A., Wagner, C., Erban, A., & Kopka, J. (2005). Metabolome analysis: The potential of in vivo labeling with stable isotopes for metabolite profiling. Trends in Biotechnology, 23(1), 28–33.

    PubMed  CAS  Google Scholar 

  6. Boroujerdi, A. F., Vizcaino, M. I., Meyers, A., Pollock, E. C., Huynh, S. L., Schock, T. B., et al. (2009). NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus. Environmental Science and Technology, 43(20), 7658–7664.

    PubMed  CAS  Google Scholar 

  7. Breitling, R., Pitt, A. R., & Barrett, M. P. (2006a). Precision mapping of the metabolome. Trends in Biotechnology, 24(12), 543–548.

    PubMed  CAS  Google Scholar 

  8. Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L., & Barrett, M. P. (2006b). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2(3), 155–164.

    CAS  Google Scholar 

  9. Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134(7), 1322–1332.

    PubMed  CAS  Google Scholar 

  10. Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., et al. (2011). Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27(8), 1108–1112.

    PubMed  CAS  Google Scholar 

  11. Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., et al. (2008). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 36(Database issue), D623–D631.

    PubMed  CAS  Google Scholar 

  12. Castro-Perez, J., Roddy, T. P., Nibbering, N. M., Shah, V., McLaren, D. G., Previs, S., et al. (2011). Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. Journal of the American Society for Mass Spectrometry, 22(9), 1552–1567.

    PubMed  CAS  Google Scholar 

  13. Creek, D. J., Jankevics, A., Breitling, R., Watson, D. G., Barrett, M. P., & Burgess, K. E. (2011). Toward global metabolomics analysis with hydrophilic interaction liquid chromatography-mass spectrometry: Improved metabolite identification by retention time prediction. Analytical Chemistry, 83(22), 8703–8710.

    PubMed  CAS  Google Scholar 

  14. Creek, D. J., Jankevics, A., Burgess, K. E., Breitling, R., & Barrett, M. P. (2012). IDEOM: An Excel interface for analysis of LC-MS based metabolomics data. Bioinformatics, 28(7), 1048–1049.

    PubMed  CAS  Google Scholar 

  15. Crockford, D. J., Maher, A. D., Ahmadi, K. R., Barrett, A., Plumb, R. S., Wilson, I. D., et al. (2008). 1H NMR and UPLC-MS(E) statistical heterospectroscopy: Characterization of drug metabolites (xenometabolome) in epidemiological studies.” Analytical Chemistry, 80(18), 6835–6844.

    PubMed  CAS  Google Scholar 

  16. de Hoffmann, E., & Stroobant, V. (2007). Mass spectrometry—Principle and applications. Chichester: Wiley.

    Google Scholar 

  17. De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

    PubMed  Google Scholar 

  18. Dear, G. J., Plumb, R. S., Sweatman, B. C., Ismail, I. M., & Ayrton, J. (1999). Tandem mass spectrometry linked fraction collection for the isolation of drug metabolites from biological matrices. Rapid Communications in Mass Spectrometry, 13(10), 886–894.

    PubMed  CAS  Google Scholar 

  19. Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant–microbe interactions. Plant Physiology, 137(4), 1302–1318.

    PubMed  CAS  Google Scholar 

  20. Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26(1), 51–78.

    PubMed  CAS  Google Scholar 

  21. Draper, J., Enot, D. P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., et al. (2009). Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics, 10(1), 227.

    PubMed  Google Scholar 

  22. Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5(1), 011001.

    PubMed  Google Scholar 

  23. Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011a). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387–426.

    PubMed  CAS  Google Scholar 

  24. Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011b). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083.

    PubMed  CAS  Google Scholar 

  25. Dunn, W. B., Brown, M., Worton, S. A., Crocker, I. P., Broadhurst, D., Horgan, R., et al. (2009). Changes in the metabolic footprint of placental explant-conditioned culture medium identifies metabolic disturbances related to hypoxia and pre-eclampsia. Placenta, 30(11), 974–980.

    PubMed  CAS  Google Scholar 

  26. Erve, J. C., Gu, M., Wang, Y., DeMaio, W., & Talaat, R. E. (2009). Spectral accuracy of molecular ions in an LTQ/Orbitrap mass spectrometer and implications for elemental composition determination. Journal of the American Society for Mass Spectrometry, 20(11), 2058–2069.

    PubMed  CAS  Google Scholar 

  27. Eyres, G. T., Urban, S., Morrison, P. D., Dufour, J. P., & Marriott, P. J. (2008). Method for small-molecule discovery based on microscale-preparative multidimensional gas chromatography isolation with nuclear magnetic resonance spectroscopy. Analytical Chemistry, 80(16), 6293–6299.

    PubMed  CAS  Google Scholar 

  28. Farag, M. A., Deavours, B. E., de Fátima, A., Naoumkina, M., Dixon, R. A., & Sumner, L. W. (2009). Integrated metabolite and transcript profiling identify a biosynthetic mechanism for hispidol in Medicago truncatula cell cultures. Plant Physiology, 151(3), 1096–1113.

    PubMed  CAS  Google Scholar 

  29. Feldberg, L., Venger, I., Malitsky, S., Rogachev, I., & Aharoni, A. (2009). Dual labeling of metabolites for metabolome analysis (DLEMMA): A new approach for the identification and relative quantification of metabolites by means of dual isotope labeling and liquid chromatography-mass spectrometry. Analytical Chemistry, 81(22), 9257–9266.

    PubMed  CAS  Google Scholar 

  30. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., & Whitehouse, C. M. (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science, 246(4926), 64–71.

    PubMed  CAS  Google Scholar 

  31. Fernie, A. R., Aharoni, A., Willmitzer, L., Stitt, M., Tohge, T., Kopka, J., et al. (2011). Recommendations for reporting metabolite data. The Plant Cell, 23(7), 2477–2482.

    PubMed  CAS  Google Scholar 

  32. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2(3), 155–168.

    PubMed  CAS  Google Scholar 

  33. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    PubMed  CAS  Google Scholar 

  34. Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000a). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18(11), 1157–1161.

    PubMed  CAS  Google Scholar 

  35. Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000b). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72(15), 3573–3580.

    PubMed  CAS  Google Scholar 

  36. Fuhrer, T., Heer, D., Begemann, B., & Zamboni, N. (2011). High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Analytical Chemistry, 83(18), 7074–7080.

    PubMed  CAS  Google Scholar 

  37. Giavalisco, P., Hummel, J., Lisec, J., Inostroza, A. C., Catchpole, G., & Willmitzer, L. (2008). High-resolution direct infusion-based mass spectrometry in combination with whole 13C metabolome isotope labeling allows unambiguous assignment of chemical sum formulas. Analytical Chemistry, 80(24), 9417–9425.

    PubMed  CAS  Google Scholar 

  38. Giavalisco, P., Köhl, K., Hummel, J., Seiwert, B., & Willmitzer, L. (2009). 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography-mass spectrometry-based metabolomic research. Analytical Chemistry, 81(15), 6546–6551.

    PubMed  CAS  Google Scholar 

  39. Gipson, G. T., Tatsuoka, K. S., Sokhansanj, B. A., Ball, R. J., & Connor, S. C. (2008). Assignment of MS-based metabolomic datasets via compound interaction pair mapping. Metabolomics, 4(1), 94–103.

    CAS  Google Scholar 

  40. Goodacre, R. (2007). Metabolomics of a superorganism. Journal of Nutrition, 137(1 Suppl), 259S–266S.

    PubMed  CAS  Google Scholar 

  41. Halket, J. M., & Zaikin, V. G. (2003). Derivatization in mass spectrometry—1. Silylation. European Journal of Mass Spectrometry, 9(1), 1–21.

    PubMed  CAS  Google Scholar 

  42. Heinonen, M., Rantanen, A., Mielikäinen, T., Kokkonen, J., Kiuru, J., Ketola, R. A., et al. (2008). FiD: A software for ab initio structural identification of product ions from tandem mass spectrometric data. Rapid Communications in Mass Spectrometry, 22(19), 3043–3052.

    PubMed  CAS  Google Scholar 

  43. Herrgård, M. J., Swainston, N., Dobson, P., Dunn, W. B., Arga, K. Y., Arvas, M., et al. (2008). A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 26(10), 1155–1160.

    PubMed  Google Scholar 

  44. Hildebrandt, C., Wolf, S., & Neumann, S. (2011). Database supported candidate search for metabolite identification. Journal of Integrative Bioinformatics, 8(2), 157.

    PubMed  Google Scholar 

  45. Hill, D. W., Kertesz, T. M., Fontaine, D., Friedman, R., & Grant, D. F. (2008). Mass spectral metabonomics beyond elemental formula: Chemical database querying by matching experimental with computational fragmentation spectra. Analytical Chemistry, 80(14), 5574–5582.

    PubMed  CAS  Google Scholar 

  46. Hill, A. W., & Mortishire-Smith, R. J. (2005). Automated assignment of high-resolution collisionally activated dissociation mass spectra using a systematic bond disconnection approach. Rapid Communications in Mass Spectrometry, 19(21), 3111–3118.

    CAS  Google Scholar 

  47. Hoekman, B., Breitling, R., Suits, F., Bischoff, R., & Horvatovich, P. (2012). msCompare: A framework for quantitative analysis of label-free LC-MS data for comparative biomarker studies. Molecular & Cellular Proteomics. doi:10.1074/mcp.M111.015974.

  48. Hoopmann, M. R., Merrihew, G. E., von Haller, P. D., & MacCoss, M. J. (2009). Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures. Journal of Proteome Research, 8(4), 1870–1875.

    PubMed  CAS  Google Scholar 

  49. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.

    PubMed  CAS  Google Scholar 

  50. Huege, J., Goetze, J., Schwarz, D., Bauwe, H., Hagemann, M., & Kopka, J. (2011). Modulation of the major paths of carbon in photorespiratory mutants of synechocystis. PLoS ONE, 6(1), e16278.

    PubMed  CAS  Google Scholar 

  51. Huege, J., Sulpice, R., Gibon, Y., Lisec, J., Koehl, K., & Kopka, J. (2007). GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry, 68(16–18), 2258–2272.

    PubMed  CAS  Google Scholar 

  52. Hummel, J., Strehmel, N., Selbig, J., Walther, D., & Kopka, J. (2010). Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics, 6(2), 322–333.

    PubMed  CAS  Google Scholar 

  53. Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., et al. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949–962.

    PubMed  CAS  Google Scholar 

  54. Kahar, P., Taku, K., & Tanaka, S. (2011). Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 111(5), 557–563.

    PubMed  CAS  Google Scholar 

  55. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., & Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research, 38(Database issue), D355–D360.

    PubMed  CAS  Google Scholar 

  56. Kaufmann, A. (2010). Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100,000 full width at half maximum. Rapid Communications in Mass Spectrometry, 24(14), 2035–2045.

    PubMed  CAS  Google Scholar 

  57. Kenny, L. C., Broadhurst, D. I., Dunn, W., Brown, M., North, R. A., McCowan, L., et al. (2010). Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension, 56(4), 741–749.

    PubMed  CAS  Google Scholar 

  58. Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234.

    PubMed  Google Scholar 

  59. Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.

    PubMed  Google Scholar 

  60. Kind, T., & Fiehn, O. (2011). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2(1–4), 23–60.

    Google Scholar 

  61. Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., et al. (2009). FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Analytical Chemistry, 81(24), 10038–10048.

    PubMed  CAS  Google Scholar 

  62. Kirchmair, J., Williamson, M. J., Tyzack, J. D., Tan, L., Bond, P. J., Bender, A., et al. (2012). Computational prediction of metabolism: Sites, products, SAR, P450 enzyme dynamics, and mechanisms. Journal of Chemical Information and Modeling, 52(3), 617–648.

    PubMed  CAS  Google Scholar 

  63. Koch, B. P., Dittmar, T., Witt, M., & Kattner, G. (2007). Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter. Analytical Chemistry, 79(4), 1758–1763.

    PubMed  CAS  Google Scholar 

  64. Komatsu, M., Uchiyama, T., Omura, S., Cane, D. E., & Ikeda, H. (2010). Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. The Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2646–2651.

    CAS  Google Scholar 

  65. Konishi, Y., Kiyota, T., Draghici, C., Gao, J. M., Yeboah, F., Acoca, S., et al. (2007). Molecular formula analysis by an MS/MS/MS technique to expedite dereplication of natural products. Analytical Chemistry, 79(3), 1187–1197.

    PubMed  CAS  Google Scholar 

  66. Kopka, J. (2006). Current challenges and developments in GC-MS based metabolite profiling technology. Journal of Biotechnology, 124(1), 312–322.

    PubMed  CAS  Google Scholar 

  67. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@CSB.DB: The Golm Metabolome Database. Bioinformatics, 21(8), 1635–1638.

    PubMed  CAS  Google Scholar 

  68. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2011). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283–289.

    PubMed  Google Scholar 

  69. Kumari, S., Stevens, D., Kind, T., Denkert, C., & Fiehn, O. (2011). Applying in silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Analytical Chemistry, 83(15), 5895–5902.

    PubMed  CAS  Google Scholar 

  70. Lei, Z., Huhman, D. V., & Sumner, L. W. (2011). Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry, 286(29), 25435–25442.

    PubMed  CAS  Google Scholar 

  71. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1(1), 387–396.

    PubMed  CAS  Google Scholar 

  72. Lloyd, A. J., Beckmann, M., Favé, G., Mathers, J. C., & Draper, J. (2011). Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. British Journal of Nutrition, 106(6), 812–824.

    PubMed  CAS  Google Scholar 

  73. Loo, R. L., Chan, Q., Brown, I. J., Robertson, C. E., Stamler, J., Nicholson, J. K., et al. (2012). A comparison of self-reported analgesic use and detection of urinary ibuprofen and acetaminophen metabolites by means of metabonomics: The INTERMAP study. American Journal of Epidemiology, 175(4), 348–358.

    PubMed  Google Scholar 

  74. Lu, X., Zhao, X., Bai, C., Zhao, C., Lu, G., & Xu, G. (2008). LC-MS-based metabonomics analysis. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 866(1–2), 64–76.

    CAS  Google Scholar 

  75. Lugan, R., Niogret, M. F., Leport, L., Guégan, J. P., Larher, F. R., Savouré, A., et al. (2010). Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. The Plant Journal, 64(2), 215–229.

    PubMed  CAS  Google Scholar 

  76. Malvoisin, E., Evrard, E., Roberfroid, M., & Mercier, M. (1979). Determination of Kovats retention indices with a capillary column and electron-capture detection: Application to the assay of the enzymatic conversion of 3,4-epoxy-1-butene into diepoxybutane. Journal of Chromatography, 186, 81–87.

    PubMed  CAS  Google Scholar 

  77. Matsuda, F., Shinbo, Y., Oikawa, A., Hirai, M. Y., Fiehn, O., Kanaya, S., et al. (2009). Assessment of metabolome annotation quality: A method for evaluating the false discovery rate of elemental composition searches. PLoS ONE, 4(10), e7490.

    PubMed  Google Scholar 

  78. Mihaleva, V. V., Verhoeven, H. A., de Vos, R. C., Hall, R. D., & van Ham, R. C. (2009). Automated procedure for candidate compound selection in GC-MS metabolomics based on prediction of Kovats retention index. Bioinformatics, 25(6), 787–794.

    PubMed  CAS  Google Scholar 

  79. Miura, D., Tsuji, Y., Takahashi, K., Wariishi, H., & Saito, K. (2010). A strategy for the determination of the elemental composition by Fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Analytical Chemistry, 82(13), 5887–5891.

    PubMed  CAS  Google Scholar 

  80. Neumann, S., Thum, A., & Böttcher, S. (2012). Nearline acquisition and processing of liquid chromatography-tandem mass spectrometry data. Metabolomics. doi:10.1007/s11306-012-0401-0.

  81. Ochiai, N., & Sasamoto, K. (2010). Selectable one-dimensional or two-dimensional gas chromatography-olfactometry/mass spectrometry with preparative fraction collection for analysis of ultra-trace amounts of odor compounds. Journal of Chromatography A, 1218(21), 3180–3185.

    PubMed  Google Scholar 

  82. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1), 29–34.

    PubMed  CAS  Google Scholar 

  83. Oresic, M., Simell, S., Sysi-Aho, M., Näntö-Salonen, K., Seppänen-Laakso, T., Parikka, V., et al. (2008). Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. Journal of Experimental Medicine, 205(13), 2975–2984.

    PubMed  CAS  Google Scholar 

  84. Pechlivanis, A., Kostidis, S., Saraslanidis, P., Petridou, A., Tsalis, G., Mougios, V., et al. (2010). (1)H-NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. Journal of Proteome Research, 9(12), 6405–6416.

    PubMed  CAS  Google Scholar 

  85. Plumb, R. S., Johnson, K. A., Rainville, P., Smith, B. W., Wilson, I. D., Castro-Perez, J. M., et al. (2006). UPLIC/MS(E); A new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Communications in Mass Spectrometry, 20(13), 1989–1994.

    PubMed  CAS  Google Scholar 

  86. Pope, G. A., MacKenzie, D. A., Defernez, M., Aroso, M. A., Fuller, L. J., Mellon, F. A., et al. (2007). Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast, 24(8), 667–679.

    PubMed  CAS  Google Scholar 

  87. Ramautar, R., Somsen, G. W., & de Jong, G. J. (2009). CE-MS in metabolomics. Electrophoresis, 30(1), 276–291.

    PubMed  CAS  Google Scholar 

  88. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., et al. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell, 13(1), 11–29.

    PubMed  CAS  Google Scholar 

  89. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Technical advance: Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. The Plant Journal, 23(1), 131–142.

    PubMed  CAS  Google Scholar 

  90. Rogers, S., Scheltema, R. A., Girolami, M., & Breitling, R. (2009). Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics, 25(4), 512–518.

    PubMed  CAS  Google Scholar 

  91. Rojas-Chertó, M., Kasper, P. T., Willighagen, E. L., Vreeken, R. J., Hankemeier, T., & Reijmers, T. H. (2011). Elemental composition determination based on MS(n). Bioinformatics, 27(17), 2376–2383.

    PubMed  Google Scholar 

  92. Sana, T. R., Roark, J. C., Li, X., Waddell, K., & Fischer, S. M. (2008). Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. Journal of Biomolecular Techniques, 19(4), 258–266.

    PubMed  Google Scholar 

  93. Sansone, S.-A., Schober, D., Atherton, H. J., Fiehn, O., Jenkins, H., Rocca-Serra, P., et al. (2007). Metabolomics standards initiative—Ontology working group work in progress. Metabolomics, 3(3), 249–256.

    CAS  Google Scholar 

  94. Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., et al. (2005). GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Letters, 579(6), 1332–1337.

    PubMed  CAS  Google Scholar 

  95. Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793.

    PubMed  CAS  Google Scholar 

  96. Scheltema, R. A., Kamleh, A., Wildridge, D., Ebikeme, C., Watson, D. G., Barrett, M. P., et al. (2008). Increasing the mass accuracy of high-resolution LC-MS data using background ions: A case study on the LTQ-Orbitrap. Proteomics, 8(22), 4647–4656.

    PubMed  CAS  Google Scholar 

  97. Schmidt, B., Joussen, N., Bode, M., & Schuphan, I. (2006). Oxidative metabolic profiling of xenobiotics by human P450s expressed in tobacco cell suspension cultures. Biochemical Society Transactions, 34(Pt 6), 1241–1245.

    PubMed  CAS  Google Scholar 

  98. Schug, K., & McNair, H. M. (2002). Adduct formation in electrospray ionization. Part 1: Common acidic pharmaceuticals. Journal of Separation Science, 25(12), 759–766.

    Google Scholar 

  99. Schug, K., & McNair, H. M. (2003). Adduct formation in electrospray ionization mass spectrometry II. Benzoic acid derivatives. Journal of Chromatography A, 985(1–2), 531–539.

    PubMed  CAS  Google Scholar 

  100. Schymanski, E. L., Gallampois, C. M., Krauss, M., Meringer, M., Neumann, S., Schulze, T., et al. (2012). Consensus structure elucidation combining GC/EI-MS, structure generation and calculated properties. Analytical Chemistry, 84(7), 3287–3295.

    PubMed  CAS  Google Scholar 

  101. Schymanski, E. L., Meringer, M., & Brack, W. (2011). Automated strategies to identify compounds on the basis of GC/EI-MS and calculated properties. Analytical Chemistry, 83(3), 903–912.

    PubMed  CAS  Google Scholar 

  102. Sheldon, M. T., Mistrik, R., & Croley, T. R. (2009). Determination of ion structures in structurally related compounds using precursor ion fingerprinting. Journal of the American Society for Mass Spectrometry, 20(3), 370–376.

    PubMed  CAS  Google Scholar 

  103. Siegel, M. M., & Gill, G. (1990). MASSPEC: A graphics-based data system for correlating a mass spectrum with a proposed structure. Analytica Chimica Acta, 237, 459–472.

    CAS  Google Scholar 

  104. Smart, K. F., Aggio, R. B., Van Houtte, J. R., & Villas-Bôas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5(10), 1709–1729.

    PubMed  CAS  Google Scholar 

  105. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494.

    PubMed  CAS  Google Scholar 

  106. Southam, A. D., Payne, T. G., Cooper, H. J., Arvanitis, T. N., & Viant, M. R. (2007). Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Analytical Chemistry, 79(12), 4595–4602.

    PubMed  CAS  Google Scholar 

  107. Spagou, K., Wilson, I. D., Masson, P., Theodoridis, G., Raikos, N., Coen, M., et al. (2010). HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Analytical Chemistry, 83(1), 382–390.

    PubMed  Google Scholar 

  108. Stoll, N., Schmidt, E., & Thurow, K. (2006). Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 17(12), 1692–1699.

    PubMed  CAS  Google Scholar 

  109. Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC-MS metabolite profiling. The Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 871(2), 182–190.

    CAS  Google Scholar 

  110. Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., et al. (2007). LMSD: LIPID MAPS structure database. Nucleic Acids Res, 35(Database issue), D527–D532.

    PubMed  CAS  Google Scholar 

  111. Sugimoto, M., Kikuchi, S., Arita, M., Soga, T., Nishioka, T., & Tomita, M. (2005). Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Analytical Chemistry, 77(1), 78–84.

    PubMed  CAS  Google Scholar 

  112. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221.

    CAS  Google Scholar 

  113. Taylor, N. S., Weber, R. J. M., Southam, A. D., Payne, T. G., Hrydziuszko, O., Arvanitis, T. N., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5(1), 44–58.

    CAS  Google Scholar 

  114. Theodoridis, G., Gika, H. G., & Wilson, I. D. (2008). LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC—Trends in Analytical Chemistry, 27(3), 251–260.

    CAS  Google Scholar 

  115. Tikunov, Y., Lommen, A., de Vos, C. H., Verhoeven, H. A., Bino, R. J., Hall, R. D., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    PubMed  CAS  Google Scholar 

  116. Tong, H., Bell, D., Tabei, K., & Siegel, M. M. (1999). Automated data massaging, interpretation, and e-mailing modules for high throughput open access mass spectrometry. Journal of the American Society for Mass Spectrometry, 10(11), 1174–1187.

    CAS  Google Scholar 

  117. van der Hooft, J. J., Vervoort, J., Bino, R. J., Beekwilder, J., & de Vos, R. C. (2010). Polyphenol identification based on systematic and robust high-resolution accurate mass spectrometry fragmentation. Analytical Chemistry, 83(1), 409–416.

    PubMed  Google Scholar 

  118. van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L., & Hankemeier, T. (2007). Microbial metabolomics: Toward a platform with full metabolome coverage. Analytical Biochemistry, 370(1), 17–25.

    PubMed  Google Scholar 

  119. Viant, M. R. (2008). Recent developments in environmental metabolomics. Molecular BioSystems, 4(10), 980–986.

    PubMed  CAS  Google Scholar 

  120. Wachsmuth, C. J., Almstetter, M. F., Waldhier, M. C., Gruber, M. A., Nürnberger, N., Oefner, P. J., et al. (2011). Performance evaluation of gas chromatography-atmospheric pressure chemical ionization-time-of-flight mass spectrometry for metabolic fingerprinting and profiling. Analytical Chemistry, 83(19), 7514–7522.

    PubMed  CAS  Google Scholar 

  121. Wagner, C., Sefkow, M., & Kopka, J. (2003). Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 62(6), 887–900.

    PubMed  CAS  Google Scholar 

  122. Wang, X., Liang, Y., Zhu, L., Xie, H., Li, H., He, J., et al. (2010). Preparative isolation and purification of flavone c-glycosides from the leaves of Ficus microcarpa L. f by medium-pressure liquid chromatography, high-speed countercurrent chromatography, and preparative liquid chromatography. Journal of Liquid Chromatography & Related Technologies, 33(4), 462–480.

    Google Scholar 

  123. Weber, R. J., Southam, A. D., Sommer, U., & Viant, M. R. (2011). Characterization of isotopic abundance measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Analytical Chemistry, 83(10), 3737–3743.

    PubMed  CAS  Google Scholar 

  124. Weber, R. J. M., & Viant, M. R. (2010). MI-Pack: Increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104(1), 75–82.

    CAS  Google Scholar 

  125. Welthagen, W., Shellie, R. A., Spranger, J., Ristow, M., Zimmermann, R., & Fiehn, O. (2005). Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF) for high resolution metabolomics: Biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics, 1(1), 65–73.

    CAS  Google Scholar 

  126. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. The Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3698–3703.

    CAS  Google Scholar 

  127. Winder, C. L., Dunn, W. B., & Goodacre, R. (2011). TARDIS-based microbial metabolomics: Time and relative differences in systems. Trends in Microbiology, 19(7), 315–322.

    PubMed  CAS  Google Scholar 

  128. Wishart, D. S. (2011). Advances in metabolite identification. Bioanalysis, 3(15), 1769–1782.

    PubMed  CAS  Google Scholar 

  129. Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Database issue, 37(3), D603–D610.

    CAS  Google Scholar 

  130. Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., et al. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672.

    PubMed  CAS  Google Scholar 

  131. Wolf, S., Schmidt, S., Müller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148.

    PubMed  Google Scholar 

  132. Xu, Y., Heilier, J. F., Madalinski, G., Genin, E., Ezan, E., Tabet, J. C., et al. (2010). Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building. Analytical Chemistry, 82(13), 5490–5501.

    PubMed  CAS  Google Scholar 

  133. Yuan, J., Doucette, C. D., Fowler, W. U., Feng, X. J., Piazza, M., Rabitz, H. A., et al. (2009). Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Molecular Systems Biology, 5, 302.

    PubMed  Google Scholar 

  134. Zhu, J., & Cole, R. B. (2000). Formation and decompositions of chloride adduct ions. Journal of the American Society for Mass Spectrometry, 11(11), 932–941.

    PubMed  CAS  Google Scholar 

  135. Zhudamo, J. S., Qunfa Hong, R. L., Lu, P., & Wang, L. (1988). ASES/MS: An automatic structure elucidation system for organic compounds using mass spectrometric data. The Analyst, 113, 1261–1265.

    Google Scholar 

Download references

Acknowledgments

WD and MB gratefully acknowledge support from the National Institute for Health Research (NIHR) Manchester Biomedical Research Centre and the UK NorthWest Development Agency (NWDA). RW thanks both the British Heart Foundation (PG/10/036/28341) and UK Engineering and Physical Sciences Research Council (EP/J501414/1) for support. RG is very grateful to the UK BBSRC for financial support. DJC is funded by an Australian National Health and Medical Research Council (NHMRC) Training Fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Warwick B. Dunn.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunn, W.B., Erban, A., Weber, R.J.M. et al. Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 9, 44–66 (2013). https://doi.org/10.1007/s11306-012-0434-4

Download citation

Keywords

  • Capillary electrophoresis
  • Metabolomics
  • Metabolite identification
  • Structure elucidation
  • Mass spectrometry
  • Gas chromatography
  • Liquid chromatography
  • Ultra performance liquid chromatography
  • DIMS