Advertisement

Metabolomics

, Volume 9, Issue 1, pp 57–77 | Cite as

Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment

  • Stéphane Bernillon
  • Benoît Biais
  • Catherine Deborde
  • Mickaël Maucourt
  • Cécile Cabasson
  • Yves Gibon
  • Thomas H. Hansen
  • Søren Husted
  • Ric C. H. de Vos
  • Roland Mumm
  • Harry Jonker
  • Jane L. Ward
  • Sonia J. Miller
  • John M. Baker
  • Joseph Burger
  • Ya’akov Tadmor
  • Michael H. Beale
  • Jan K. Schjoerring
  • Arthur A. Schaffer
  • Dominique Rolin
  • Robert D. Hall
  • Annick MoingEmail author
Original Article

Abstract

Melon (Cucumis melo L.) is a global crop in terms of economic importance and nutritional quality. The aim of this study was to explore the variability in metabolite and elemental composition of several commercial varieties of melon in various environmental conditions. Volatile and non-volatile metabolites as well as mineral elements were profiled in the flesh of mature fruit, employing a range of complementary analytical technologies. More than 1,000 metabolite signatures and 19 mineral elements were determined. Data analyses revealed variations related to factors such as variety, growing season, contrasting agricultural management practices (greenhouse vs. field with or without fruit thinning) and planting date. Two hundred and ninety-one analytes discriminated two contrasting varieties, one from the var. inodorous group and the other from the var. cantaloupensis group. Two hundred and eighty analytes discriminated a short shelf-life from a mid-shelf-life variety within the var. cantaloupensis group. Three hundred and twenty-seven analytes discriminated two seasons, and two hundred and fifty-two analytes discriminated two contrasting agricultural management practices. The affected compound families greatly depended on the factor studied. The compositional variability of identified or partially identified compounds was used to study metabolite and mineral element co-regulation using correlation networks. The results confirm that metabolome and mineral element profiling are useful diagnostic tools to characterize the quality of fruits cultivated under commercial conditions. They can also provide knowledge on fruit metabolism and the mechanisms of plant response to environmental modifications, thereby paving the way for metabolomics-guided improvement of cultural practices for better fruit quality.

Keywords

Cucumis melo Fruit quality 1H-NMR MS Metabolomics Mineral elements 

Supplementary material

11306_2012_429_MOESM1_ESM.pdf (88 kb)
Supplementary material 1 (PDF 88 kb)
11306_2012_429_MOESM2_ESM.pdf (21 kb)
Supplementary material 2 (PDF 22 kb)
11306_2012_429_MOESM3_ESM.pdf (114 kb)
Supplementary material 3 (PDF 114 kb)
11306_2012_429_MOESM4_ESM.pdf (97 kb)
Supplementary material 4 (PDF 97 kb)
11306_2012_429_MOESM5_ESM.pdf (184 kb)
Supplementary material 5 (PDF 184 kb)
11306_2012_429_MOESM6_ESM.pdf (222 kb)
Supplementary material 6 (PDF 223 kb)
11306_2012_429_MOESM7_ESM.pdf (57 kb)
Supplementary material 7 (PDF 58 kb)

References

  1. Allwood, J. W., Erban, A., de Koning, S., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.PubMedCrossRefGoogle Scholar
  2. Arun, K., Shankera, T., Cervantes, C., Loza-Taverac, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.CrossRefGoogle Scholar
  3. Aubert, C., & Bourger, N. (2004). Investigation of volatiles in Charentais Cantaloupe melons (Cucumis melo Var. cantalupensis). Characterization of aroma constituents in some cultivars. Journal of Agricultural and Food Chemistry, 52, 4522–4528.PubMedCrossRefGoogle Scholar
  4. Aubert, C., & Pitrat, M. (2006). Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. Journal of Agricultural and Food Chemistry, 54, 8177–8182.PubMedCrossRefGoogle Scholar
  5. Beaulieu, J. C. (2005). Within-season volatile and quality differences in stored fresh-cut cantaloupe cultivars. Journal of Agricultural and Food Chemistry, 53, 8679–8687.PubMedCrossRefGoogle Scholar
  6. Biais, B., Allwood, J. W., Deborde, C., et al. (2009). 1H-NMR, GC-EI-TOF-MS and data set correlation for fruit metabolomics, application to spatial metabolite analysis in melon. Analytical Chemistry, 81, 2884–2894.PubMedCrossRefGoogle Scholar
  7. Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2007). Zinc in plants. New Phytologist, 173, 677–702.PubMedCrossRefGoogle Scholar
  8. Burger, Y., Sa’ar, U., Paris, H. S., et al. (2006). Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal of Plant Sciences, 54, 233–242.CrossRefGoogle Scholar
  9. Carrari, F., Baxter, C., Usadel, B., et al. (2006). Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142, 1380–1396.PubMedCrossRefGoogle Scholar
  10. Davies, H. V., Shepherd, L. V. T., Stewart, D., et al. (2010). Metabolome variability in crop plant species—When, where, how much and so what? Regulatory Toxicology and Pharmacology, 58, S54–S61.PubMedCrossRefGoogle Scholar
  11. De Vos, R. C. H., Hall, R., & Moing, A. (2011). Metabolomics of a model fruit: tomato. In R. Hall (Ed.), Biology of plant metabolomics (pp. 109–155). Oxford: Wiley-Blackwell Ltd.Google Scholar
  12. De Vos, R. C. H., Moco, S., Lommen, A., et al. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.PubMedCrossRefGoogle Scholar
  13. Demiral, M. A., & Koseoglu, A. T. (2005). Effect of potassium on yield, fruit quality, and chemical composition of greenhouse-grown galia melon. Journal of Plant Nutrition, 28, 93–100.CrossRefGoogle Scholar
  14. Dufault, R. J., Korkmaz, A., Ward, B. K., & Hassell, R. L. (2006). Planting date and cultivar affect melon quality and productivity. HortScience, 41, 1559–1564.Google Scholar
  15. Ezura, H. (2009). Tomato is a next-generation model plant for research and development. Journal of the Japanese Society for Horticultural Science, 78, 1–2.CrossRefGoogle Scholar
  16. Ezura, H., & Fukino, N. (2009). Research tools for functional genomics in melon (Cucumis melo L.): Current status and prospects. Plant Biotechnology, 26, 359–368.CrossRefGoogle Scholar
  17. Fan, T. W. M. (1996). Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Progress in Nuclear Magnetic Resonance Spectroscopy, 28, 161–219.Google Scholar
  18. Feigin, A. (1990). Interactive effects of salinity and ammonium/nitrate ratio on growth and chemical composition of melon plants. Journal of Plant Nutrition, 13, 1257–1269.CrossRefGoogle Scholar
  19. Feigin, A., Rylski, I., Meiri, A., & Shalhevet, J. (1987). Response of melon and tomato plants to chloride–nitrate ratio in saline nutrient solutions. Journal of Plant Nutrition, 10, 1787–1794.CrossRefGoogle Scholar
  20. Femandes, J. C., & Henriques, F. S. (1991). Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review, 57, 246–273.CrossRefGoogle Scholar
  21. Ferry-Dumazet, H., Gil, L., Deborde, C., et al. (2011). MeRy-B: A web knowledgebase for the storage, visualization, analysis and annotation of plant 1H-NMR metabolomic profiles. BMC Plant Biology, 11, 104.PubMedCrossRefGoogle Scholar
  22. Fish, W. W. & Bruton, B. D. (2010). Quantification of l-citrulline and other physiologic amino acids in watermelon and selected cucurbits. In Cucurbitacae 2010, Charleston, SC (pp. 152–154).Google Scholar
  23. Gao, Z., & Schaffer, A. A. (1999). A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiology, 119, 979–987.PubMedCrossRefGoogle Scholar
  24. Gautier, H., Diakou-Verdin, V., Bénard, C., et al. (2008). How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? Journal of Agricultural and Food Chemistry, 56, 1241–1250.PubMedCrossRefGoogle Scholar
  25. Ghosh, D., Bhattacharya, B., Mukherjee, B., et al. (2002). Role of chromium supplementation in Indians with type 2 diabetes mellitus. Journal of Nutritional Biochemistry, 13, 690–697.PubMedCrossRefGoogle Scholar
  26. Gibon, Y., Rolin, D., Deborde, C., Bernillon, S. & Moing, A. (2012). New opportunities in metabolomics and biochemical phenotyping for plant systems biology. In U. Roessner (Ed.), Metabolomics: InTech. http://www.intechopen.com/articles/show/title/new-opportunities-in-metabolomics-and-biochemical-phenotyping-for-plant-systems-biology.
  27. Gonda, I., Bar, E., Portnoy, V., et al. (2010). Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of Experimental Botany, 61, 1111–1123.PubMedCrossRefGoogle Scholar
  28. Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.PubMedGoogle Scholar
  29. Hagelstein, P., & Schultz, G. (1993). Leucine synthesis in spinach-chloroplasts: Partial characterization of 2-isopropylmalate synthase. Biological Chemistry Hoppe-Seyler, 374, 1105–1108.PubMedCrossRefGoogle Scholar
  30. Hall, R. D. (2011). Plant metabolomics in a nutshell: Potential and future challenges. In R. D. Hall (Ed.), Biology of plant metabolomics (pp. 1–24). Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  31. Hansch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12, 259–266.PubMedCrossRefGoogle Scholar
  32. Hansen, T. H., Laursen, K. H., Persson, D. P., et al. (2009). Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods, 5. doi: 10.1186/1746-4811-1185-1112.
  33. Harrigan, G., Martino-Catt, S., & Glenn, K. (2007). Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics, 3, 259–272.CrossRefGoogle Scholar
  34. Hussain, D., Haydon, M. J., Wang, Y., et al. (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 1327–1339.PubMedCrossRefGoogle Scholar
  35. Husted, S., Persson, D. P., Laursen, K. H., et al. (2011). The role of atomic spectrometry in plant science. Journal of Analytical Atomic Spectrometry, 26, 52–79.CrossRefGoogle Scholar
  36. Igamberdiev, A. U., & Kleczkowski, L. A. (2006). Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. Journal of Experimental Botany, 57, 2133–2141.PubMedCrossRefGoogle Scholar
  37. Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2008). Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chemistry, 107, 362–368.CrossRefGoogle Scholar
  38. Johnson, H. E., Broadhurst, D., Goodacre, R., & Smith, A. R. (2003). Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry, 62, 919–928.PubMedCrossRefGoogle Scholar
  39. Knowles, L., Trimble, M. R., & Knowles, N. R. (2001). Phosphorus status affects postharvest respiration, membrane permeability and lipid chemistry of European seedless cucumber fruit (Cucumis sativus L.). Postharvest Biology and Technology, 21, 179–188.CrossRefGoogle Scholar
  40. Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265.PubMedCrossRefGoogle Scholar
  41. Laursen, K. H., Hansen, T. H., Persson, D. P., Schjoerring, J. K., & Husted, S. (2009). Multi-elemental fingerprinting of plant tissue by semi-quantitative ICP-MS and chemometrics. Journal of Analytical Atomic Spectrometry, 24, 1198–1207.CrossRefGoogle Scholar
  42. Leshem, Y.a. Y, Wills, R. B. H., & Ku, V. V.-V. (1998). Evidence for the function of the free radical gas—nitric oxide (NO)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiology and Biochemistry, 36, 825–833.CrossRefGoogle Scholar
  43. Lester, G. E. (2005). Whole plant applied potassium: effects on cantaloupe fruit sugar content and related human wellness compounds. In Proceedings of the fifth international postharvest symposium (pp. 487–492) Verona, Italy, 6–11 June, 2004. Leuven: International Society for Horticultural Science (ISHS).Google Scholar
  44. Lester, G. (2006). Consumer preference quality attributes of melon fruits. In Proceedings of the IVth international conference on managing quality in chains MQUIC 2006: Integrated view on fruits and vegetables quality (Vol. 1, pp. 175–181), Bangkok, Thailand, 7–10 August 2006.Google Scholar
  45. Lester, G. E. (2008). Antioxidant, sugar, mineral, and phytonutrient concentrations across edible fruit tissues of orange-fleshed honeydew melon (Cucumis melo L.). Journal of Agricultural and Food Chemistry, 56, 3694–3698.PubMedCrossRefGoogle Scholar
  46. Lester, G. E., & Crosby, K. M. (2002). Ascorbic acid, folic acid, and potassium content in postharvest green-flesh honeydew muskmelons: influence of cultivar, fruit size, soil type, and year. Journal of the American Society for Horticultural Science, 127, 843–847.Google Scholar
  47. Lester, G. E., & Grusak, M. A. (1999). Postharvest application of calcium and magnesium to honeydew and netted muskmelons: effects on tissue ion concentrations, quality, and senescence. Journal of the American Society for Horticultural Science, 124, 545–552.Google Scholar
  48. Lester, G. E., Jifon, J. L., & Makus, D. J. (2010). Impact of potassium nutrition on postharvest fruit quality: Melon (Cucumis melo L.) case study. Plant and Soil, 335, 117–131.CrossRefGoogle Scholar
  49. Lindon, J. C., Holmes, E., & Nicholson, J. K. (2001). Pattern recognition methods and applications in biomedical magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 39, 1–40.CrossRefGoogle Scholar
  50. Liu, H.-F., Génard, M., Guichard, S., & Bertin, N. (2007). Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes. Journal of Experimental Botany, 58, 3567–3580.PubMedCrossRefGoogle Scholar
  51. Lommen, A. (2009). MetAlign: Interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Analytical Chemistry, 81, 3079–3086.PubMedCrossRefGoogle Scholar
  52. Macduff, J. H., Hopper, M. J., Wild, A., & Trim, F. E. (1987). Comparison of the effects of root temperature on nitrate and ammonium nutrition of oilseed rape (Brassica napus L.) in flowing solution culture. Journal of Experimental Botany, 38, 1104–1120.CrossRefGoogle Scholar
  53. Mitchell, D. E., Gadus, M. V., & Madore, M. A. (1992). Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.). 1. Diurnal patterns. Plant Physiology, 99, 959–965.PubMedCrossRefGoogle Scholar
  54. Moco, S., Capanoglu, E., Tikunov, Y., et al. (2007). Tissue specialization at the metabolite level is perceived during the development of tomato fruit. Journal of Experimental Botany, 58, 4131–4146.PubMedCrossRefGoogle Scholar
  55. Moing, A., Aharoni, A., Biais, B., et al. (2011). Extensive metabolic cross talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190, 683–696.PubMedCrossRefGoogle Scholar
  56. Mounet, F., Lemaire-Chamley, M., Maucourt, M., et al. (2007). Quantitative metabolic profiles of tomato flesh and seeds during fruit development: Complementary analysis with ANN and PCA. Metabolomics, 3, 273–288.CrossRefGoogle Scholar
  57. Moyen, C., & Roblin, G. (2009). Uptake and translocation of strontium in hydroponically grown maize plants, and subsequent effects on tissue ion content, growth and chlorophyll a/b ratio: comparison with Ca effects. Environmental and Experimental Botany, 68, 247–257.CrossRefGoogle Scholar
  58. Obando-Ulloa, J. M., Moreno, E., Garcia-Mas, J., et al. (2008). Climacteric or non-climacteric behavior in melon fruit. 1. Aroma volatiles. Postharvest Biology and Technology, 49, 27–37.CrossRefGoogle Scholar
  59. Ortiz-Serrano, P., & Gil, J. V. (2009). Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. Journal of Agricultural and Food Chemistry, 58, 1106–1114.CrossRefGoogle Scholar
  60. Pereira, G. E., Gaudillere, J. P., van Leeuven, C., et al. (2006). 1H NMR metabolic fingerprinting of grape berry: comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563, 346–352.CrossRefGoogle Scholar
  61. Poiroux-Gonord, F., Bidel, L. P. R., Fanciullino, A. L., et al. (2010). Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. Journal of Agricultural and Food Chemistry, 58, 12065–12082.CrossRefGoogle Scholar
  62. Portnoy, V., Benyamini, Y., Bar, E., et al. (2008). The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Molecular Biology, 66, 647–661.PubMedCrossRefGoogle Scholar
  63. Rimando, A. M., & Perkins-Veazie, P. M. (2005). Determination of citrulline in watermelon rind. Journal of Chromatography A, 1078, 196–200.PubMedCrossRefGoogle Scholar
  64. Rowan, K. S., McGlasson, W. B., & Pratt, H. K. (1969). Changes in adenosine pyrophosphates in Cantaloupe fruit ripening normally and after treatment with ethylene. Journal of Experimental Botany, 20, 145–155.CrossRefGoogle Scholar
  65. Saeed, A. I., Bhagabati, N. K., Braisted, J. C., et al. (2006). TM4 microarray software suite. In A. R. Kimmel & B. Oliver (Eds.), Methods in enzymology. DNA microarrays, part B: Databases and statistics (pp. 134–193). Oxford: Academic Press.CrossRefGoogle Scholar
  66. Sarry, J.-E., & Ganata, Z. (2004). Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chemistry, 87, 509–521.CrossRefGoogle Scholar
  67. Schauer, N., Semel, Y., Roessner, U., et al. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24, 447–454.PubMedCrossRefGoogle Scholar
  68. Shannon, P., Markiel, A., Ozier, O., et al. 2002. Cytoscape: A software environment for integrated models of biomolecular interaction networks. In Proceedings of the 3rd international conference on systems biology, ICSB 2002 (pp. 2498–2504), Stockholm, Sweden.Google Scholar
  69. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.PubMedCrossRefGoogle Scholar
  70. Stepansky, A., Kovalski, I., Schaffer, A. A., & Perl-Treves, R. (1999). Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genetic Resources and Crop Evolution, 46, 53–62.CrossRefGoogle Scholar
  71. Stewart, D., Sheperd, L. V. T., Hall, R. D., & Fraser, P. D. (2011). Crops and tasty, nutritious food: How can metabolomics help? In R. D. Hall (Ed.), Biology of plant metabolomics (pp. 181–217). Chichester: Wiley-Blackwell.Google Scholar
  72. Strehmel, N., Hummel, J., Erban, A., Strassburg, K., & Kopka, J. (2008). Retention index thresholds for compound matching in GC-MS metabolite profiling. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 871, 182–190.CrossRefGoogle Scholar
  73. Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.CrossRefGoogle Scholar
  74. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62, 817–836.PubMedCrossRefGoogle Scholar
  75. Sweetman, C., Deluc, L. G., Cramer, G. R., Ford, C. M., & Soole, K. L. (2009). Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 70, 1329–1344.PubMedCrossRefGoogle Scholar
  76. Tarazona-Díaz, M. P., Viegas, J., Moldao-Martins, M., & Aguayo, E. (2010). Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. Journal of the Science of Food and Agriculture, 91, 805–812.CrossRefGoogle Scholar
  77. Taureilles-Saurel, C., Romieu, C. G., Robin, J.-P., & Flanzy, C. (1995). Grape (Vitis vinifera L.) malate dehydrogenase. II. Characterization of the major mitochondrial and cytosolic isoforms and their role in ripening. American Journal of Enology and Viticulture, 46, 29–36.Google Scholar
  78. Tikunov, Y., Laptenok, S., Hall, R., Bovy, A., & de Vos, R. (2012). MSClust: A tool for unsupervised mass spectra extraction of chromatography–mass spectrometry ion-wise aligned data. Metabolomics. doi: 10.1007/s11306-011-0368-2.
  79. Tikunov, Y., Lommen, A., de Vos, C. H. R., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139, 1125–1137.PubMedCrossRefGoogle Scholar
  80. Verhoeven, H. A., Jonker, H., de Vos, R. C. H., & Hall, R. D. (2012). Solid-phase micro-extraction (SPME) GC-MS analysis of natural volatile components in melon and rice. In N. G. Hardy & R. D. Hall (Eds.), Plant metabolomics methods. Ithaca: Humana Press.Google Scholar
  81. Vincent, J. B. (2003). Recent advances in the biochemistry of chromium(III). Journal of Trace Elements in Experimental Medicine, 16, 227–236.CrossRefGoogle Scholar
  82. Wada, M. (1930). Über citrullin, eine neue aminosäure im presssaft der wassermelone. Citrullus vulgaris Schrad. Biochemische Zeitschrift, 224, 420.Google Scholar
  83. Ward, J. L., Forcat, S., Beckmann, M., et al. (2010). The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant Journal, 63, 443–457.CrossRefGoogle Scholar
  84. Weckwerth, W., Loureiro, M. E., Wenzel, K., & Fiehn, O. (2004). Differential metabolic networks unravel the effects of silent plant phenotypes. Proceedings of the National academy of Sciences of the United States of America, 101, 7809–7814.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stéphane Bernillon
    • 1
    • 2
  • Benoît Biais
    • 1
  • Catherine Deborde
    • 1
    • 2
  • Mickaël Maucourt
    • 2
    • 3
  • Cécile Cabasson
    • 2
    • 3
  • Yves Gibon
    • 1
    • 2
  • Thomas H. Hansen
    • 4
  • Søren Husted
    • 4
  • Ric C. H. de Vos
    • 5
    • 6
    • 7
  • Roland Mumm
    • 5
    • 7
  • Harry Jonker
    • 5
    • 6
    • 7
  • Jane L. Ward
    • 8
  • Sonia J. Miller
    • 8
  • John M. Baker
    • 8
  • Joseph Burger
    • 9
  • Ya’akov Tadmor
    • 9
  • Michael H. Beale
    • 8
  • Jan K. Schjoerring
    • 4
  • Arthur A. Schaffer
    • 10
  • Dominique Rolin
    • 3
  • Robert D. Hall
    • 5
    • 6
    • 7
  • Annick Moing
    • 1
    • 2
    Email author
  1. 1.INRA, UMR1332 Fruit Biology and PathologyCentre INRA de BordeauxVillenave d’OrnonFrance
  2. 2.Metabolome Facility of Bordeaux Functional Genomics Center, IBVMCentre INRA de BordeauxVillenave d’OrnonFrance
  3. 3.Université Bordeaux, UMR1332 Fruit Biology and PathologyCentre INRA de BordeauxVillenave d’OrnonFrance
  4. 4.Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of ScienceUniversity of CopenhagenCopenhagenDenmark
  5. 5.Plant Research InternationalWageningenThe Netherlands
  6. 6.Netherlands Metabolomics CentreLeidenThe Netherlands
  7. 7.Centre for BioSystems GenomicsWageningenThe Netherlands
  8. 8.The National Centre for Plant and Microbial MetabolomicsRothamsted ResearchHarpendenUK
  9. 9.Newe Yaar Research CenterARORamat YishayIsrael
  10. 10.Volcani CenterAROBet-DaganIsrael

Personalised recommendations