Skip to main content
Log in

Dynamic Patterns of serum metabolites in fulminant hepatic failure pigs

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Fulminant hepatic failure (FHF) is still an intractable disease associated with serious metabolic disorder. Investigating the dynamic changes of serum metabolites during the development of FHF would facilitate revealing the pathogenesis and also promote its treatment. Therefore, this study characterized the dynamic metabonome of serum from FHF Pigs using ultra performance liquid chromatography–mass spectrometry. Based on multiple statistical analysis of the resulting dataset, three types of up-regulated and one type of down-regulated patterns were delineated. Each pattern demonstrated distinct trends at different stages during the whole process of FHF, implying the differential clinical significance of them. Specifically, aromatic amino acids (Pattern 1) and lysophosphatidylcholines (LPCs) (Pattern 4) might be good markers for evaluating the severity of FHF, while some conjugated bile acids, long chain acylcarnitines (Pattern 2) and Glycocholic acid (Pattern 3) could indicate liver injury in the early stage. Inspired from the PCA plot that the pathogenetic condition of FHF aggravated with sampling time, a linear discriminant analysis (LDA) model based on phenylalanine and LPC 18:1 were further constructed for evaluating the severity of FHF. The leave-one-out cross-validation accuracy of 91.67% for the training set and the prediction accuracy of 92.31% for the external validation set confirmed its excellent performance. In conclusion, findings obtained from the present study, including four types of Dynamic Patterns of serum metabolites during FHF development and an LDA model for evaluating the severity of FHF, will be of great help to the research and management of FHF in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAA:

Aromatic amino acids

AASLD:

The American Association for the Study of Liver Diseases

ALT:

Aspartate aminotransferase

BPI:

Base peak intensity

CHO:

Cholesterol

CV:

Coefficient of variation

d-gal:

d-galactosamine

FHF:

Fulminant hepatic failure

GC–MS:

Gas chromatography–mass spectrometry

GCDCA:

Chenodeoxycholic acid glycine conjugate

GUDCA:

Glycoursodeoxycholic acid

HPLC–MS:

High performance liquid chromatography–mass spectrometry

LDA:

Linear discriminant analysis

LOOCV:

Leave-one-out cross-validation

LPCs:

Lysophosphatidylcholines

MELD:

The model for end-stage liver disease

PCA:

Principal components analysis

PLS-DA:

Partial least squares discriminate analysis

PTA:

Prothrombin time activity

QC:

Quality control

TB:

Total bilirubin

TBA:

Total bile acids

UPLC–MS:

Ultra performance liquid chromatography–mass spectrometry

VIP:

Variable importance in the projection

References

  • Antoniades, C. G., Berry, P. A., Wendon, J. A., & Vergani, D. (2008). The importance of immune dysfunction in determining outcome in acute liver failure. Journal of Hepatology, 49, 845–861.

    Article  PubMed  CAS  Google Scholar 

  • Benz, C., Angermuller, S., Tox, U., et al. (1998). Effect of tauroursodeoxycholic acid on bile-acid-induced apoptosis and cytolysis in rat hepatocytes. Journal of Hepatology, 28, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Bernal, W., Auzinger, G., Dhawan, A., & Wendon, J. (2010). Acute liver failure. Lancet, 376, 190–201.

    Article  PubMed  Google Scholar 

  • Churchwell, M. I., Twaddle, N. C., Meeker, L. R., & Doerge, D. R. (2005). Improving LC-MS sensitivity through increases in chromatographic performance: comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences, 825, 134–143.

    Article  CAS  Google Scholar 

  • Douglas, W. R. (1972). Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sciences, 3, 226–234.

    PubMed  CAS  Google Scholar 

  • Feng, B., Wu, S., Lv, S., et al. (2007). Metabolic profiling analysis of a D-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure. Journal of Proteome Research, 6, 2161–2167.

    Article  PubMed  CAS  Google Scholar 

  • Feng, B., Wu, S., Lv, S., et al. (2008). Dynamic metabonomic analysis of BALB/c mice with different outcomes after D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Liver Transplantation, 14, 1620–1631.

    Article  PubMed  Google Scholar 

  • Gao, Y. Y., Han, T., & Kan, Z. C. (2009). Clinical study of survival time for chronic liver failure. Zhonghua Gan Zang Bing Za Zhi, 17, 131–134.

    PubMed  CAS  Google Scholar 

  • Hao, S., Xin, J., Lian, J., & Li, L. (2011). Establishing a metabolomic model for the prognosis of hepatitis B virus-induced acute-on-chronic liver failure treated with different liver support systems. Metablomics, 7, 400–412.

    Article  CAS  Google Scholar 

  • Hofmann, A. F., Korman, M. G., & Krugman, S. (1974). Sensitivity of serum bile acid assay for detection of liver damage in viral hepatitis type B. Prospective study in five patients. American Journal of Digestive Diseases, 19, 908–910.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. J., Wu, Z. W., Xiao, D. S., & Sheng, J. F. (2004). Changes of gut flora and endotoxin in rats with D-galactosamine-induced acute liver failure. World Journal of Gastroenterology, 10, 2087–2090.

    PubMed  CAS  Google Scholar 

  • Lingens, F. (1968). The biosynthesis of aromatic amino acids and its regulation. Angewandte Chemie (International ed. in English), 7, 350–360.

    Article  CAS  Google Scholar 

  • Lv, G., Zhao, L., Zhang, A., et al. (2011). Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnology and Bioengineering, 9, 2229–2236.

    Article  Google Scholar 

  • Malhi, H., Gores, G. J., & Lemasters, J. J. (2006). Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology, 43, S31–S44.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Y., Huang, X., Yu, K., et al. (2008). Metabonomic analysis of hepatitis B virus-induced liver failure: identification of potential diagnostic biomarkers by fuzzy support vector machine. Journal of Zhejiang University-Science B, 9, 474–481.

    Article  PubMed  CAS  Google Scholar 

  • Mutomba, M. C., Yuan, H., Konyavko, M., et al. (2000). Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Letters, 478, 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: Metabonomics. Nature, 455, 1054–1056.

    Article  PubMed  CAS  Google Scholar 

  • Olofsson, K. E., Andersson, L., Nilsson, J., & Bjorkbacka, H. (2008). Nanomolar concentrations of lysophosphatidylcholine recruit monocytes and induce pro-inflammatory cytokine production in macrophages. Biochemical and Biophysical Research Communications, 370, 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Pennington, C. R., Ross, P. E., & Bouchier, I. A. (1977). Serum bile acids in the diagnosis of hepatobiliary disease. Gut, 18, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Polson, J., & Lee, W. M. (2005). AASLD position paper: the management of acute liver failure. Hepatology, 41, 1179–1197.

    Article  PubMed  Google Scholar 

  • Radu, C. G., Yang, L. V., Riedinger, M., Au, M., & Witte, O. N. (2004). T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proceedings of the National Academy of Sciences USA, 101, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Sass, D. A., & Shakil, A. O. (2005). Fulminant hepatic failure. Liver Transplantation, 11, 594–605.

    Article  PubMed  Google Scholar 

  • Silk, D. B. (1986). Branched chain amino acids in liver disease: Fact or fantasy? Gut, 27(Suppl 1), 103–110.

    Article  PubMed  Google Scholar 

  • Smith, A. R., Rossi-Fanelli, F., Ziparo, V., et al. (1978). Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. Annals of Surgery, 187, 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Want, E. J., Wilson, I. D., Gika, H., et al. (2010). Global metabolic profiling procedures for urine using UPLC–MS. Nature Protocols, 5, 1005–1018.

    Article  PubMed  CAS  Google Scholar 

  • Yang, J., Zhao, X., Liu, X., et al. (2006). High performance liquid chromatography–mass spectrometry for metabonomics: potential biomarkers for acute deterioration of liver function in chronic hepatitis B. Journal of Proteome Research, 5, 554–561.

    Article  PubMed  CAS  Google Scholar 

  • Yu, K., Sheng, G., Sheng, J., et al. (2007). A metabonomic investigation on the biochemical perturbation in liver failure patients caused by hepatitis B virus. Journal of Proteome Research, 6, 2413–2419.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Jia, X., Peng, X., et al. (2010). Development and validation of a liquid chromatography–mass spectrometry metabonomic platform in human plasma of liver failure caused by hepatitis B virus. Acta Biochimica et Biophysica Sinica (Shanghai), 42, 688–698.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by National High Technology Research and Development Program of China (863 Program, No. 2011AA020104), National S&T Major Project for Infectious Disease Control of China (No. 2008ZX10002-05), and Science Fund for Creative Research Groups of the National Natural Science Foundation of China (NO. 81121002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanjuan Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Supplementary material 2 (DOC 28 kb)

MS/MS identification of phenylalanine (TIFF 381 kb)

MS/MS identification of tryptophan (TIFF 450 kb)

MS/MS identification of tyrosine (TIFF 843 kb)

MS/MS identification of GUDCA (TIFF 552 kb)

MS/MS identification of GCDCA (TIFF 554 kb)

MS/MS identification of l-palmitoylcarnitine (TIFF 223 kb)

11306_2011_381_MOESM9_ESM.tif

MS/MS identification of linoleylcarnitine based on its retention time and the characteristic ion fragments (m/z = 85) of long-chain acylcarnitines (TIFF 354 kb)

11306_2011_381_MOESM10_ESM.tif

MS/MS identification of elaidic carnitine based on its retention time and the characteristic ion fragments (m/z = 85) of long-chain acylcarnitines (TIFF 316 kb)

MS/MS identification of glycocholic acid (TIFF 567 kb)

MS/MS identification of LPC 16:0 (TIFF 566 kb)

MS/MS identification of LPC 18:0 (TIFF 509 kb)

11306_2011_381_MOESM14_ESM.tif

MS/MS identification of LPC 18:1 based on its retention time and the characteristic ion fragments (m/z = 184 and m/z = 104) of lysophosphatidylcholines (TIFF 376 kb)

11306_2011_381_MOESM15_ESM.tif

MS/MS identification of LPC 18:2 based on its retention time and the characteristic ion fragments (m/z = 184 and m/z = 104) of lysophosphatidylcholines (TIFF 338 kb)

11306_2011_381_MOESM16_ESM.tif

MS/MS identification of LPC 20:4 based on its retention time and the characteristic ion fragments (m/z = 184 and m/z = 104) of lysophosphatidylcholines (TIFF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, P., Li, J., Shao, L. et al. Dynamic Patterns of serum metabolites in fulminant hepatic failure pigs. Metabolomics 8, 869–879 (2012). https://doi.org/10.1007/s11306-011-0381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0381-5

Keywords

Navigation