Skip to main content
Log in

Data handling for interactive metabolomics: tools for studying the dynamics of metabolome-macromolecule interactions

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

All published metabolomics studies investigate changes in either absolute or relative quantities of metabolites. However, blood plasma, one of the most commonly studied biofluids for metabolomics applications, is a complex, heterogeneous mixture of lipoproteins, proteins, small organic molecules and ions which together undergo a variety of possible molecular interactions including metal complexation, chemical exchange processes, micellular compartmentation of metabolites, enzyme-mediated biotransformations and small-molecule-macromolecule binding. In particular, many low molecular weight (MW) compounds (including drugs) can exist both ‘free’ in solution and bound to proteins or within organised aggregates of macromolecules. To study the effects of e.g. disease on these interactions we suggest that new approaches are needed. We have developed a technique termed ‘interactive metabolomics’ or i-metabolomics. i-metabolomics can be defined as: “The study of interactions between low MW biochemicals and macromolecules in heterogeneous biosamples such as blood plasma, without pre-selection of the components of interest”. Standard 1D NMR experiments commonly used in metabolomics allow metabolite concentration differences between samples to be investigated because the intensity of each peak depends on the concentration of the compound in question. On the other hand, the instrument can be set-up to measure molecular interactions by monitoring the diffusion coefficients of molecules. According to the Stokes–Einstein equation, the diffusion coefficient of a molecule is inversely proportional to its effective size, as represented by the hydrodynamic radius. Therefore, when low MW compounds are non-covalently bound to proteins, the observed diffusion coefficient for the compound will be intermediate between those of its free and bound forms. By measuring diffusion by NMR, the degree of protein binding can be estimated for either low MW endogenous biochemicals or xenobiotics. This type of experiment is referred to as either Diffusion-Ordered Spectroscopy (DOSY) or Diffusion-Edited Spectroscopy, depending on the type of post-acquisition data processing applied to the spectra. Results presented in this paper demonstrate approaches for the non-selective modelling of metabolite-macromolecule interactions (i-metabolomics), whilst additionally highlighting some of the all too frequently ignored issues associated with interpretation of data derived from profiling of blood plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barton, R. H., Waterman, D., Bonner, F. W., et al. (2010). The influence of EDTA and citrate anticoagulant addition to human plasma on information recovery from NMR-based metabolic profiling studies. Molecular BioSystems, 6, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. D., Brown, J. C. C., Kubal, G., & Sadler, P. J. (1988). NMR invisible lactate. FEBS Letters, 235, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Chen, A. D., & Shapiro, M. J. (2000). NOE pumping. 2. A high-throughput method to determine compounds with binding affinity to macromolecules by NMR. Journal of the American Chemical Society, 122, 414–415.

    Article  CAS  Google Scholar 

  • Cohen, Y., Avram, L., & Frish, L. (2005). Diffusion NMR spectroscopy in supramolecular and combinatorial chemistry: An old parameter—new insights. Angewandte Chemie International Edition, 44, 520–554.

    Article  CAS  Google Scholar 

  • Connor, S. C., Nicholson, J. K., & Everett, J. E. (1987). Spin-echo proton NMR spectroscopy of urine samples: Water suppression via a urea dependant T2 relaxation process. Magnetic Resonance in Medicine, 4, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Daykin, C. A. (2010). Interactive metabolomics: A powerful new technique. Book of abstracts metabolomics 2010. http://www.metabolomics2010.com/PDF/Metabolomics%202010%20abstract%20book.pdf. Accessed 1 July 2011.

  • Daykin, C. A., Foxall, P. J. D., Connor, S. C., Lindon, J. C., & Nicholson, J. K. (2002). The comparison of plasma deproteinization methods for the detection of low-molecular-weight metabolites by 1H nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 304, 220–230.

    Article  PubMed  CAS  Google Scholar 

  • Delsuc, M. A., & Malliavin, T. E. (1998). Maximum entropy processing of DOSY NMR spectra. Analytical Chemistry, 70, 2146–2148.

    Article  CAS  Google Scholar 

  • Dieterle, F., Riefke, B., Schlotterbeck, G., et al. (2011). NMR and MS methods for metabonomics. Methods in Molecular Biology, 691, 385–415.

    Article  PubMed  CAS  Google Scholar 

  • Dyrby, M., Petersen, M., Whittaker, A. K., et al. (2005). Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics. Analytica Chimica Acta, 531, 209–216.

    Article  CAS  Google Scholar 

  • Hajduk, P. J., Olejniczak, E. T., & Fesik, S. W. (1997). One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. Journal of the American Chemical Society, 119, 12257–12261.

    Article  CAS  Google Scholar 

  • Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis. UCLA working papers in phonetics, 16, no. 10085 (pp. 1–84). Ann Arbor, MI: University Microfilms. http://publish.uwo.ca/~harshman/wpppfac0.pdf.

  • Huo, R., Geurts, C., Brands, J., Wehrens, R., & Buydens, L. M. C. (2006). Real-life applications of the MULVADO software package for processing DOSY NMR data. Magnetic Resonance in Chemistry, 44, 110–117.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley.

    Book  Google Scholar 

  • Lentner, C. (1984). Geigy scientific tables, Vol. 3: Physical chemistry composition of blood hematology somatometric data (8th revised ed.). Basel: Icon Learning Systems.

  • Lin, M., Shapiro, M. J., & Wareing, J. R. (1997). Screening mixtures by affinity NMR. Journal of Organic Chemistry, 62, 8930–8931.

    Article  CAS  Google Scholar 

  • Liu, M. L., Mao, X. A., Ye, C. H., Huang, H., Nicholson, J. K., & Lindon, J. C. (1998). Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. Journal of Magnetic Resonance, 132, 125–129.

    Article  CAS  Google Scholar 

  • Liu, M. L., Nicholson, J. K., & Lindon, J. C. (1996). High resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Analytical Chemistry, 68, 3370–3376.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. L., Nicholson, J. K., & Lindon, J. C. (1997a). Analysis of drug-protein binding using nuclear magnetic resonance based molecular diffusion measurements. Analytical Communications, 34, 225–228.

    Article  CAS  Google Scholar 

  • Liu, M. L., Nicholson, J. K., Parkinson, J. A., & Lindon, J. C. (1997b). Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional H-1-H-1 diffusion-edited total-correlation NMR spectroscopy. Analytical Chemistry, 69, 1504–1509.

    Article  PubMed  CAS  Google Scholar 

  • Loening, N. M., Keeler, J., & Morris, G. A. (2001). One-dimensional DOSY. Journal of Magnetic Resonance, 153, 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Moffat, A. C., Jackson, J. V., Moss, M. S., & Widdop, B. (1986). Clarke’s isolation and identification of drugs. London, UK: The Pharmaceutical Press.

    Google Scholar 

  • Morris, K. F., Stilbs, P., & Johnson, C. S. (1994). Analysis of mixtures based on molecular-size and hydrophobicity by means of diffusion-ordered 2D NMR. Analytical Chemistry, 66, 211–215.

    Article  CAS  Google Scholar 

  • Nicholson, J. K., & Gartland, K. P. R. (1989). 1H NMR studies on protein binding of histidine, tyrosine and phenylalanine in blood plasma. NMR in Biomedicine, 2, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 11, 1181–1189.

    Article  Google Scholar 

  • Nilsson, M., Botana, A., & Morris, G. A. (2009). T-1-diffusion-ordered spectroscopy: Nuclear magnetic resonance mixture analysis using parallel factor analysis. Analytical Chemistry, 81, 8119–8125.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, M., & Morris, G. A. (2006). Correction of systematic errors in CORE processing of DOSY data. Magnetic Resonance in Chemistry, 44, 655.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. G., Watkins, P. B., & Reilly, M. D. (2011). Metabolomics in toxicology: Preclinical and clinical applications. Toxicological Sciences, 120(suppl 1), S146–S170.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. M., Maher, A. D., Cloarec, O., et al. (2007). Statistical correlation and projection methods for improved information recovery from diffusion-edited NMR spectra of biological samples. Analytical Chemistry, 79, 5682–5689.

    Article  PubMed  CAS  Google Scholar 

  • Stockman, B. J., & Dalvit, C. (2002). NMR screening techniques in drug discovery and drug design. Progress in Nuclear Magnetic Resonance Spectroscopy, 41, 187–231.

    Article  CAS  Google Scholar 

  • Tietz, N. W. (1986). Textbook of clinical chemistry (p. 590). Philadelphia: Saunders.

    Google Scholar 

  • Tiziani, S., Einwas, A. H., Lodi, A., Ludwig, C., Bunce, C. M., Viant, M. R., et al. (2008). Optimized metabolite extraction from blood serum for H-1 nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 377, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Weigelt, J., van Dongen, M., Uppenberg, J., Schultz, J., & Wikstrom, M. (2002). Site-selective screening by NMR spectroscopy with labeled amino acid pairs. Journal of the American Chemical Society, 124, 2446–2447.

    Article  PubMed  CAS  Google Scholar 

  • Windig, W., Antalek, B., Sorriero, L. J., Bijlsma, S., Louwerse, D. J., & Smilde, A. K. (1999). Applications and new developments of the direct exponential curve resolution algorithm (DECRA). Examples of spectra and magnetic resonance images. Journal of Chemometrics, 13, 95.

    Article  Google Scholar 

  • Zartler, E. R., Yan, J. L., Mo, H. P., Kline, A. D., & Shapiro, M. J. (2003). 1D NMR methods in ligand-receptor interactions. Current Topics in Medicinal Chemistry, 3, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, G., Stait-Gardner, T., Kumar, P. G. A., Torres, A. M., & Price, W. S. (2008). PGSTE-WATERGATE: An STE-based PGSE NMR sequence with excellent solvent suppression. Journal of Magnetic Resonance, 191, 159–163.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jonathan Byrne (School of Pharmacy, University of Nottingham, now School of Biosciences, University of Birmingham) for his contribution to the early stages of this project, Angela Savage (School of Pharmacy, University of Nottingham) for technical assistance during this work. Professor Gareth Morris and Dr. Matteis Nilsson (University of Manchester) are also gratefully acknowledged for fruitful discussions on the initial set up of the diffusion experiments. Finally, the EPSRC are thanked for funding of the work (EPSRC Grant number EP/F014767/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare A. Daykin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daykin, C.A., Bro, R. & Wulfert, F. Data handling for interactive metabolomics: tools for studying the dynamics of metabolome-macromolecule interactions. Metabolomics 8 (Suppl 1), 52–63 (2012). https://doi.org/10.1007/s11306-011-0359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0359-3

Keywords

Navigation