Skip to main content
Log in

Non-targeted metabolite profiling in activated macrophage secretion

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Periodontal diseases are inflammatory infectious diseases that affect the periodontal tissue. Macrophages play a central role in inflammatory conditions, leading to the destruction of tissues. Identifying the signaling molecules secreted by macrophages would be valuable to the study of these diseases. Here, we present non-targeted analysis using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS) for the profiling of extracellular metabolites released during macrophage activation. Lipopolysaccharide (LPS)-induced activation of a mouse macrophage-like cell line RAW264.7 was used as a model system. Cells were treated without (control) or with LPS for 22 h and, after washing, were incubated for 1 h in phosphate-buffered saline. The accumulation of metabolites in the culture supernatant was monitored. LPS treatment significantly enhanced the accumulation of prostaglandins, tumor necrosis factor-α, nitric oxide and citrulline in the culture medium. RAW264.7 cells produced 46 metabolites and 66% of these showed significant changes (P < 0.05) following cell activation. In particular, the production of leucine, hypoxanthine, choline, putrecine, N 8-acetylspermidine, succinate, itaconate, and 4-methyl-2-oxopentanoate was significantly increased by cell activation (P < 0.001). Significantly elevated production of lactate and glycine was also observed. Here, we present the first catalog of the up and down-regulation of the various metabolites secreted by macrophages following inflammatory activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barnes, V. M., Teles, R., Trivedi, H. M., Devizio, W., Xu, T., Mitchell, M. W., et al. (2009). Acceleration of purine degradation by periodontal diseases. Journal of Dental Research, 88(9), 851–855.

    Article  PubMed  CAS  Google Scholar 

  • Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. Journal of Pathology, 196(3), 254–265.

    Article  PubMed  CAS  Google Scholar 

  • Carmans, S., Hendriks, J. J., Thewissen, K., Van den Eynden, J., Stinissen, P., Rigo, J. M., et al. (2010). The inhibitory neurotransmitter glycine modulates macrophage activity by activation of neutral amino acid transporters. Journal of Neuroscience Research, 88(11), 2420–2430.

    PubMed  CAS  Google Scholar 

  • Cronstein, B. N., Montesinos, M. C., & Weissmann, G. (1999a). Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6377–6381.

    Article  PubMed  CAS  Google Scholar 

  • Cronstein, B. N., Montesinos, M. C., & Weissmann, G. (1999b). Sites of action for future therapy: An adenosine-dependent mechanism by which aspirin retains its antiinflammatory activity in cyclooxygenase-2 and NFkappaB knockout mice. Osteoarthritis and Cartilage, 7(4), 361–363.

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi, P. (2011). Role of glutathione in immunity and inflammation in the lung. International Journal of General Medicine, 4, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Giannobile, W. V., Beikler, T., Kinney, J. S., Ramseier, C. A., Morelli, T., & Wong, D. T. (2009). Saliva as a diagnostic tool for periodontal disease: Current state and future directions. Periodontology, 2000(50), 52–64.

    Article  Google Scholar 

  • Kand’ar, R., Zakova, P., & Muzakova, V. (2006). Monitoring of antioxidant properties of uric acid in humans for a consideration measuring of levels of allantoin in plasma by liquid chromatography. Clinica Chimica Acta, 365(1–2), 249–256.

    Article  Google Scholar 

  • Kim, J. M., Jeong, D., Kang, H. K., Jung, S. Y., Kang, S. S., & Min, B. M. (2007). Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cellular Physiology and Biochemistry, 20(6), 935–946.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Yin, Y. L., Li, D., Woo Kim, S., & Wu, G. (2007). Amino acids and immune function. British Journal of Nutrition, 98(02), 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M. S., Joshipura, K., Giovannucci, E., & Michaud, D. S. (2008). A review of the relationship between tooth loss, periodontal disease, and cancer. Cancer Causes and Control, 19(9), 895–907.

    Article  PubMed  Google Scholar 

  • Nakamura, Y., Kodama, H., Satoh, T., Adachi, K., Watanabe, S., Yokote, Y., et al. (2010). Diurnal changes in salivary amino acid concentrations. In Vivo, 24(6), 837–842.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., Matsumoto, S., Mochida, T., Nakamura, K., Takehana, K., & Endo, F. (2009). Glycine regulates proliferation and differentiation of salivary-gland-derived progenitor cells. Cell and Tissue Research, 336(2), 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Nareika, A., He, L., Game, B. A., Slate, E. H., Sanders, J. J., London, S. D., et al. (2005). Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities. American Journal of Physiology—Endocrinology and Metabolism, 289(4), E534–E542.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, A., Yokote, Y., & Sakagami, H. (2010). Changes in amino acid metabolism during activation of mouse macrophage-like cell lines. In Vivo, 24(6), 857–860.

    PubMed  CAS  Google Scholar 

  • Noda, M., Nakanishi, H., Nabekura, J., & Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. The Journal of Neuroscience, 20(1), 251.

    PubMed  CAS  Google Scholar 

  • Noguchi, K., & Ishikawa, I. (2007). The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontology, 2000(43), 85–101.

    Article  Google Scholar 

  • Paradise, W. A., Vesper, B. J., Goel, A., et al. (2010). Nitric oxide: Perspectives and emerging studies of a well known cytotoxin. International Journal of Molecular Sciences, 11, 2715–2745.

    Article  CAS  Google Scholar 

  • Pihlstrom, B. L., Michalowicz, B. S., & Johnson, N. W. (2005). Periodontal diseases. The Lancet, 366(9499), 1809–1820.

    Article  Google Scholar 

  • Ralph, P., & Nakoinz, I. (1977). Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: Enhancement by PPD and LPS. Journal of Immunology, 119(3), 950–954.

    CAS  Google Scholar 

  • Rausch-Fan, X., Ulm, C., Jensen-Jarolim, E., Schedle, A., Boltz-Nitulescu, G., Rausch, W. D., et al. (2005). Interleukin-1beta-induced prostaglandin E2 production by human gingival fibroblasts is upregulated by glycine. Journal of Periodontology, 76(7), 1182–1188.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Prados, J. C., Traves, P. G., Cuenca, J., Rico, D., Aragones, J., Martin-Sanz, P., et al. (2010). Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. Journal of Immunology, 185(1), 605–614.

    Article  CAS  Google Scholar 

  • Roiniotis, J., Dinh, H., Masendycz, P., Turner, A., Elsegood, C. L., Scholz, G. M., et al. (2009). Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. Journal of Immunology, 182(12), 7974–7981.

    Article  CAS  Google Scholar 

  • Rose, M. L., Rivera, C. A., Bradford, B. U., Graves, L. M., Cattley, R. C., Schoonhoven, R., et al. (1999). Kupffer cell oxidant production is central to the mechanism of peroxisome proliferators. Carcinogenesis, 20(1), 27–33.

    Article  PubMed  CAS  Google Scholar 

  • Samuvel, D. J., Sundararaj, K. P., Nareika, A., Lopes-Virella, M. F., & Huang, Y. (2009). Lactate boosts TLR4 signaling and NF-kappaB pathway-mediated gene transcription in macrophages via monocarboxylate transporters and MD-2 up-regulation. Journal of Immunology, 182(4), 2476–2484.

    Article  CAS  Google Scholar 

  • Soga, T., Baran, R., Suematsu, M., Ueno, Y., Ikeda, S., Sakurakawa, T., et al. (2006). Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. Journal of Biological Chemistry, 281(24), 16768–16776.

    Article  PubMed  CAS  Google Scholar 

  • Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H. P., & Tomita, M. (2009). Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Analytical Chemistry, 81(15), 6165–6174.

    Article  PubMed  CAS  Google Scholar 

  • Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Stuckey, D., Anthony, D., Lowe, J., Miller, J., Palm, W., Styles, P., et al. (2005). Detection of the inhibitory neurotransmitter GABA in macrophages by magnetic resonance spectroscopy. Journal of Leukocyte Biology, 78(2), 393.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, M., Goto, H., Otomo, K., Ito, M., Onuma, H., Suzuki, A., et al. (2010a). Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. Journal of Agriculture and Food Chemistry, 58(14), 8418–8425.

    Article  CAS  Google Scholar 

  • Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010b). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6(1), 78–95.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J., Sekine, T., Nishishiro, M., Arai, A., Wakabayashi, H., Kurihara, T., et al. (2008). Inhibition of NO production in LPS-stimulated mouse macrophage-like cells by trihaloacetylazulene derivatives. Anticancer Research, 28(1A), 171–178.

    PubMed  CAS  Google Scholar 

  • Takeda, I., Stretch, C., Barnaby, P., Bhatnager, K., Rankin, K., Fu, H., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22(6), 577–584.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Machino, M., Akita, S., Yokote, Y., & Sakagami, H. (2010). Changes in salivary amino acid composition during aging. In Vivo, 24(6), 853–856.

    PubMed  CAS  Google Scholar 

  • Van Dyke, T. E., & Serhan, C. N. (2003). Resolution of inflammation: A new paradigm for the pathogenesis of periodontal diseases. Journal of Dental Research, 82(2), 82–90.

    Article  PubMed  Google Scholar 

  • Xu, F. L., You, H. B., Li, X. H., Chen, X. F., Liu, Z. J., & Gong, J. P. (2008). Glycine attenuates endotoxin-induced liver injury by downregulating TLR4 signaling in Kupffer cells. American Journal of Surgery, 196(1), 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Yamashina, S., Ikejima, K., Rusyn, I., & Sato, N. (2007). Glycine as a potent anti-angiogenic nutrient for tumor growth. Journal of Gastroenterology and Hepatology, 22(Suppl 1), S62–S64.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, T., Yamazaki, A., Onuki, H., Hibino, Y., Yokote, Y., Sakagami, H., et al. (2007). Effect of saliva, epigallocatechin gallate and hypoxia on Cu-induced oxidation and cytotoxicity. In Vivo, 21(4), 603–607.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research funds from the Yamagata Prefectural Government and the city of Tsuruoka. We thank Shinobu Abe for technical assistance.

Conflicts of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sugimoto.

Additional information

M. Sugimoto and H. Sakagami contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, M., Sakagami, H., Yokote, Y. et al. Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics 8, 624–633 (2012). https://doi.org/10.1007/s11306-011-0353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0353-9

Keywords

Navigation