Metabolomics

, Volume 9, Supplement 1, pp 132–143 | Cite as

High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome

  • Quinlyn A. Soltow
  • Frederick H. Strobel
  • Keith G. Mansfield
  • Lynn Wachtman
  • Youngja Park
  • Dean P. Jones
Original Article

Abstract

Studies of gene–environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present study, we compared the analytic capability of dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) to previously used liquid chromatography-FTMS (LC-FTMS) analysis for high-throughput, top-down metabolic profiling. For DC-FTMS, we combined data from sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. Each analysis was performed with electrospray ionization in the positive ion mode and detection from m/z 85 to 850. Run time for each column was 10 min with gradient elution; 10 μl extracts of plasma from humans and common marmosets were used for analysis. In comparison to analysis with the AE column alone, addition of the second LC-FTMS analysis with the C18 column increased m/z feature detection by 23–36%, yielding a total number of features up to 7,000 for individual samples. Approximately 50% of the m/z matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns. Database matches included insecticides, herbicides, flame retardants, and plasticizers. Modularity clustering algorithms applied to MS-data showed the ability to detection clusters and ion interactions. DC-FTMS thus provides improved capability for high-performance metabolic profiling of the exposome and development of personalized medicine.

Keywords

Metabolomics LC/MS Anion exchange Reverse phase Exposome Personalized medicine Predictive health FT-ICR Plasma 

Supplementary material

11306_2011_332_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. Aronson, K. J., Wilson, J. W., Hamel, M., et al. (2010). Plasma organochlorine levels and prostate cancer risk. Journal of Exposure Science and Environmental Epidemiology, 20, 434–445.PubMedCrossRefGoogle Scholar
  2. Brigham, K. L. (2010). Predictive health: the imminent revolution in health care. Journal of the American Geriatrics Society, 58(Suppl 2), S298–S302.PubMedCrossRefGoogle Scholar
  3. Brown, M., Dunn, W. B., Dobson, P., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. The Analyst, 134, 1322–1332.PubMedCrossRefGoogle Scholar
  4. Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81, 2135–2143.PubMedCrossRefGoogle Scholar
  5. Crews, B., Wikoff, W. R., Patti, G. J., et al. (2009). Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Analytical Chemistry, 81, 8538–8544.PubMedCrossRefGoogle Scholar
  6. Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243–1266.PubMedCrossRefGoogle Scholar
  7. Evans, A. M., DeHaven, C. D., Barrett, T., Mitchell, M., & Milgram, E. (2009). Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Analytical Chemistry, 81, 6656–6667.PubMedCrossRefGoogle Scholar
  8. Gilmour, M. I., Jaakkola, M. S., London, S. J., Nel, A. E., & Rogers, C. A. (2006). How exposure to environmental tobacco smoke, outdoor air pollutants, and increased pollen burdens influences the incidence of asthma. Environmental Health Perspectives, 114, 627–633.PubMedCrossRefGoogle Scholar
  9. Haouala, A., Zanolari, B., Rochat, B., et al. (2009). Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences, 877, 1982–1996.CrossRefGoogle Scholar
  10. Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics, 28, 100–108.CrossRefGoogle Scholar
  11. Hodel, E. M., Zanolari, B., Mercier, T., et al. (2009). A single LC-tandem mass spectrometry method for the simultaneous determination of 14 antimalarial drugs and their metabolites in human plasma. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences, 877, 867–886.CrossRefGoogle Scholar
  12. Howell, G., III, & Mangum, L. (2010). Exposure to bioaccumulative organochlorine compounds alters adipogenesis, fatty acid uptake, and adipokine production in NIH3T3-L1 cells. Toxicology in Vitro, 25(1), 394–402.PubMedCrossRefGoogle Scholar
  13. Institute of Laboratory Animal Resources. (1996). Guide for the care and use of laboratory animals. Washington, DC: National Academy Press.Google Scholar
  14. Johnson, J. M., Strobel, F. H., Reed, M., Pohl, J., & Jones, D. P. (2008). A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clinica Chimica Acta, 396, 43–48.CrossRefGoogle Scholar
  15. Johnson, J. M., Yu, T., Strobel, F. H., & Jones, D. P. (2010). A practical approach to detect unique metabolic patterns for personalized medicine. Analyst, 135, 2864–2870.PubMedCrossRefGoogle Scholar
  16. Jones, D. P., Park, Y., Gletsu-Miller, N., et al. (2011). Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition, 27, 199–205.PubMedCrossRefGoogle Scholar
  17. Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data: an introduction to cluster analysis. New York: Wiley.Google Scholar
  18. Kind, T., Scholz, M., & Fiehn, O. (2009). How large is the metabolome? a critical analysis of data exchange practices in chemistry. PLoS One, 4, e5440.PubMedCrossRefGoogle Scholar
  19. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480.CrossRefGoogle Scholar
  20. Lawton, K. A., Berger, A., Mitchell, M., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9, 383–397.PubMedCrossRefGoogle Scholar
  21. Lewis, C. M., Whitwell, S. C., Forbes, A., et al. (2007). Estimating risks of common complex diseases across genetic and environmental factors: the example of Crohn disease. Journal of Medical Genetics, 44, 689–694.PubMedCrossRefGoogle Scholar
  22. Loscalzo, J., Kohane, I., & Barabasi, A. L. (2007). Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Molecular systems biology, 3, 124.PubMedCrossRefGoogle Scholar
  23. Mar, J. C., Wells, C. A., & Quackenbush, J. (2011). Defining an informativeness metric for clustering gene expression data. Bioinformatics, 27(8), 1094–1100.PubMedCrossRefGoogle Scholar
  24. Marshall, A. G., & Hendrickson, C. L. (2008). High-resolution mass spectrometers. Annual review of Analytical Chemistry (Palo Alto Calif), 1, 579–599.CrossRefGoogle Scholar
  25. McLachlan, G. J., Bean, R. W., & Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413–422.PubMedCrossRefGoogle Scholar
  26. Miura, D., Tsuji, Y., Takahashi, K., Wariishi, H., & Saito, K. (2010). A strategy for the determination of the elemental composition by fourier transform ion cyclotron resonance mass spectrometry based on isotopic peak ratios. Analytical Chemistry, 82, 5887–5891.PubMedCrossRefGoogle Scholar
  27. Nordstrom, A., Want, E., Northen, T., Lehtio, J., & Siuzdak, G. (2008). Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical Chemistry, 80, 421–429.PubMedCrossRefGoogle Scholar
  28. Olsen, J. V., Schwartz, J. C., Griep-Raming, J., et al. (2009). A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Molecular and Cellular Proteomics, 8, 2759–2769.PubMedCrossRefGoogle Scholar
  29. Peng, J., Oo, M. L., & Andersen, J. K. (2010). Synergistic effects of environmental risk factors and gene mutations in Parkinson’s disease accelerate age-related neurodegeneration. Journal of Neurochemistry, 115(6), 1363–1373.PubMedCrossRefGoogle Scholar
  30. Sandanger, T. M., Brustad, M., Sandau, C. D., & Lund, E. (2006). Levels of persistent organic pollutants (POPs) in a coastal northern Norwegian population with high fish-liver intake. Journal of Environmental Monitoring, 8, 552–557.PubMedCrossRefGoogle Scholar
  31. Soltow, Q. A., Jones, D. P., & Promislow, D. E. (2010). A network perspective on metabolism and aging. Integrative and comparative biology, 50, 844–854.PubMedCrossRefGoogle Scholar
  32. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457, 910–914.PubMedCrossRefGoogle Scholar
  33. Stone, E. A., & Ayroles, J. F. (2009). Modulated modularity clustering as an exploratory tool for functional genomic inference. PLoS Genetics, 5, e1000479.PubMedCrossRefGoogle Scholar
  34. Takahashi, H., Kai, K., Shinbo, Y., et al. (2008). Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 2769–2782.PubMedCrossRefGoogle Scholar
  35. Tjernberg, A., Markova, N., Griffiths, W. J., & Hallen, D. (2006). DMSO-related effects in protein characterization. Journal of Biomolecular Screening: the Official Journal of the Society for Biomolecular Screening, 11, 131–137.CrossRefGoogle Scholar
  36. Voit, E. O. (2009). A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. Mathematical Biosciences, 217, 11–18.PubMedCrossRefGoogle Scholar
  37. Wang, H., Yang, X. B., Liu, A. L., et al. (2007). Significant positive correlation of plasma BPDE-albumin adducts to urinary 1-hydroxypyrene in coke oven workers. Biomedical and Environmental Sciences, 20, 179–183.PubMedGoogle Scholar
  38. Want, E. J., O’Maille, G., Smith, C. A., et al. (2006). Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Analytical Chemistry, 78, 743–752.PubMedCrossRefGoogle Scholar
  39. Wild, C. P. (2005). Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer epidemiology, Biomarkers and Prevention, 14, 1847–1850.PubMedCrossRefGoogle Scholar
  40. Yanes, O., Tautenhahn, R., Patti, G. J., & Siuzdak, G. (2011). Expanding coverage of the metabolome for global metabolite profiling. Analytical Chemistry, 83, 2152–2161.PubMedCrossRefGoogle Scholar
  41. Yu, T., Park, Y., Johnson, J. M., & Jones, D. P. (2009). apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics, 25, 1930–1936.PubMedCrossRefGoogle Scholar
  42. Ziech, D., Franco, R., Pappa, A., et al. (2010). The role of epigenetics in environmental and occupational carcinogenesis. Chemico Biological Interactions, 188, 340–349.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Quinlyn A. Soltow
    • 1
  • Frederick H. Strobel
    • 3
  • Keith G. Mansfield
    • 4
  • Lynn Wachtman
    • 4
  • Youngja Park
    • 1
    • 2
  • Dean P. Jones
    • 1
    • 2
  1. 1.Department of Medicine, Division of Pulmonary, Allergy and Critical CareEmory UniversityAtlantaUSA
  2. 2.Clinical Biomarkers LaboratoryEmory UniversityAtlantaUSA
  3. 3.Mass Spectrometry CenterEmory UniversityAtlantaUSA
  4. 4.Harvard Medical SchoolNew England Primate Research CenterSouthboroughUSA

Personalised recommendations