Skip to main content
Log in

Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A key interest in clinical diagnosis and pharmaceutical industry is to have a repertoire of noninvasive biomarkers to—individually or in combination—be able to infer or predict the degree of liver injury caused by pathological conditions or drugs. Metabolomics—a comprehensive study of global metabolites—has become a highly sensitive and powerful tool for biomarker discovery thanks to recent technological advances. An ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS)-based metabolomics approach was employed to investigate sera from galactosamine-treated rats to find potential biomarkers for acute liver injury. Hepatic damage was quantified by determining serum transaminase activity and in situ liver histological lesions. Principal component analysis in combination with coefficient of correlation analysis was used for biomarker selection and identification. According to the data, serum levels of several metabolites including glucose, amino acids, and membrane lipids were significantly modified, some of them showing a high correlation with the degree of liver damage determined by histological examination of the livers. In conclusion, this study supports that UPLC-MS/MS based serum metabolomics in experimental animal models could be a powerful approach to search for biomarkers for drug- or disease-induced liver injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arai, K., Lee, K., Berthiaume, F., Tompkins, R. G., & Yarmush, M. L. (2001). Intrahepatic amino acid and glucose metabolism in a d-galactosamine-induced rat liver failure model. Hepatology, 34, 360–371.

    Article  PubMed  CAS  Google Scholar 

  • Barr, J., Vazquez-Chantada, M., Alonso, C., Perez-Cormenzana, M., Mayo, R., Galan, A., et al. (2010). Liquid chromatography-mass spectrometry-based parallel metabolic profiling of human and mouse model serum reveals putative biomarkers associated with the progression of nonalcoholic fatty liver disease. Journal of Proteome Research, 9, 4501–4512.

    Article  PubMed  CAS  Google Scholar 

  • Boelsterli, U. A., & Lim, P. L. (2007). Mitochondrial abnormalities—a link to idiosyncratic drug hepatotoxicity? Toxicology and Applied Pharmacology, 220, 92–107.

    Article  PubMed  CAS  Google Scholar 

  • Brindle, J. T., Antti, H., Holmes, E., Tranter, G., Nicholson, J. K., Bethell, H. W., et al. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nature Medicine, 8, 1439–1444.

    Article  PubMed  CAS  Google Scholar 

  • Cabrero, C., Duce, A. M., Ortiz, P., Alemany, S., & Mato, J. M. (1988). Specific loss of the high-molecular-weight form of S-adenosyl-l-methionine synthetase in human liver cirrhosis. Hepatology, 8, 1530–1534.

    Article  PubMed  CAS  Google Scholar 

  • Chan, E. C., Yap, S. L., Lau, A. J., Leow, P. C., Toh, D. F., & Koh, H. L. (2007). Ultra-performance liquid chromatography/time-of-flight mass spectrometry based metabolomics of raw and steamed Panax notoginseng. Rapid Communications in Mass Spectrometry, 21, 519–528.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Gonzalez, F. J., & Idle, J. R. (2007). LC-MS-based metabolomics in drug metabolism. Drug Metabolism Reviews, 39, 581–597.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, C. J., & Haselden, J. N. (2008). Metabolic profiling as a tool for understanding mechanisms of toxicity. Toxicologic Pathology, 36, 140–147.

    Article  PubMed  CAS  Google Scholar 

  • Coen, M. (2010). A metabonomic approach for mechanistic exploration of pre-clinical toxicology. Toxicology, 278, 326–340.

    Article  PubMed  CAS  Google Scholar 

  • Coen, M., Hong, Y. S., Clayton, T. A., Rohde, C. M., Pearce, J. T., Reily, M. D., et al. (2007). The mechanism of galactosamine toxicity revisited; a metabonomic study. Journal of Proteome Research, 6, 2711–2719.

    Article  PubMed  CAS  Google Scholar 

  • Coen, M., Want, E. J., Clayton, T. A., Rhode, C. M., Hong, Y. S., Keun, H. C., et al. (2009). Mechanistic aspects and novel biomarkers of responder and non-responder phenotypes in galactosamine-induced hepatitis. Journal of Proteome Research, 8, 5175–5187.

    Article  PubMed  CAS  Google Scholar 

  • Dan, Y. Y., & Yeoh, G. C. (2008). Liver stem cells: A scientific and clinical perspective. Journal of Gastroenterology and Hepatology, 23, 687–698.

    Article  PubMed  Google Scholar 

  • Decker, K., & Keppler, D. (1972). Galactosamine induced liver injury. Progress in Liver Diseases, 4, 183–199.

    PubMed  CAS  Google Scholar 

  • Duarte, I. F., Stanley, E. G., Holmes, E., Lindon, J. C., Gil, A. M., Tang, H., et al. (2005). Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Analytical Chemistry, 77, 5570–5578.

    Article  PubMed  CAS  Google Scholar 

  • El-Mofty, S. K., Scrutton, M. C., Serroni, A., Nicolini, C., & Farber, J. L. (1975). Early, reversible plasma membrane injury in galactosamine-induced liver cell death. The American Journal of Pathology, 79, 579–596.

    PubMed  CAS  Google Scholar 

  • Feng, B., Wu, S., Lv, S., Liu, F., Chen, H., Yan, X., et al. (2007). Metabolic profiling analysis of a d-galactosamine/lipopolysaccharide-induced mouse model of fulminant hepatic failure. Journal of Proteome Research, 6, 2161–2167.

    Article  PubMed  CAS  Google Scholar 

  • Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: From diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Fox, L. M., Cox, D. G., Lockridge, J. L., Wang, X., Chen, X., Scharf, L., et al. (2009). Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biology, 7, e1000228.

    Article  PubMed  Google Scholar 

  • Gomez-Lechon, M. J., Castell, J. V., & Donato, M. T. (2008). An update on metabolism studies using human hepatocytes in primary culture. Expert Opinion on Drug Metabolism, 4, 837–854.

    Article  CAS  Google Scholar 

  • Kaplowitz, N. (2001). Drug-induced liver disorders: Implications for drug development and regulation. Drug Safety, 24, 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Keppler, D., Lesch, R., Reutter, W., & Decker, K. (1968). Experimental hepatitis induced by d-galactosamine. Experimental and Molecular Pathology, 9, 279–290.

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa, T., Tsujimoto, T., Kawaratani, H., & Fukui, H. (2009). Therapeutic approach to regulate innate immune response by Toll-like receptor 4 antagonist E5564 in rats with D-galactosamine-induced acute severe liver injury. Journal of Gastroenterology and Hepatology, 24, 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Koff, R. S., Fitts, J. J., Sabesin, S. M., & Zimmerman, H. J. (1971). d-galactosamine hepatotoxicity II. Mechanism of fatty liver production. Proceedings of the Society for Experimental Biology and Medicine, 138, 89–92.

    PubMed  CAS  Google Scholar 

  • Komano, T., Egashira, Y., & Sanada, H. (2008). l-Gln and l-Ser suppress the d-galactosamine-induced IL-18 expression and hepatitis. Biochemical and Biophysical Research Communications, 372, 688–690.

    Article  PubMed  CAS  Google Scholar 

  • Kushnir, M. M., Rockwood, A. L., Bergquist, J. (2009). Liquid chromatography-tandem mass spectrometry applications in endocrinology. Mass Spectrometry Reviews, 29, 480–502.

    Article  Google Scholar 

  • Lin, H. M., Barnett, M. P., Roy, N. C., Joyce, N. I., Zhu, S., Armstrong, K., et al. (2010). Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn’s disease. Journal of Proteome Research, 9, 1965–1975.

    Article  PubMed  CAS  Google Scholar 

  • Lott, J. A., & Landesman, P. W. (1984). The enzymology of skeletal muscle disorders. Critical Reviews in Clinical Laboratory Sciences, 20, 153–190.

    Article  PubMed  CAS  Google Scholar 

  • Lutz, U., Lutz, R. W., & Lutz, W. K. (2006). Metabolic profiling of glucuronides in human urine by LC-MS/MS and partial least-squares discriminant analysis for classification and prediction of gender. Analytical Chemistry, 78, 4564–4571.

    Article  PubMed  CAS  Google Scholar 

  • Lv, S., Wei, L., Wang, J. H., Wang, J. Y., & Liu, F. (2007). Identification of novel molecular candidates for acute liver failure in plasma of BALB/c murine model. Journal of Proteome Research, 6, 2746–2752.

    Article  PubMed  CAS  Google Scholar 

  • Maezono, K., Kajiwara, K., Mawatari, K., Shinkai, A., Torii, K., & Maki, T. (1996). Alanine protects liver from injury caused by F-galactosamine and CCl4. Hepatology, 24, 185–191.

    PubMed  CAS  Google Scholar 

  • Major, H. J., Williams, R., Wilson, A. J., & Wilson, I. D. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Communications in Mass Spectrometry, 20, 3295–3302.

    Article  PubMed  CAS  Google Scholar 

  • Mato, J. M., Martinez-Chantar, M. L., & Lu, S. C. (2008). Methionine metabolism and liver disease. Annual Review of Nutrition, 28, 273–293.

    Article  PubMed  CAS  Google Scholar 

  • Medline, A., Schaffner, F., & Popper, H. (1970). Ultrastructural features in galactosamine-induced hepatitis. Experimental and Molecular Pathology, 12, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Miller, T. J., Knapton, A., Adeyemo, O., Noory, L., Weaver, J., & Hanig, J. P. (2008). Cytochrome c: A non-invasive biomarker of drug-induced liver injury. Journal of Applied Toxicology, 28, 815–828.

    Article  PubMed  CAS  Google Scholar 

  • Miyahara, M., Enzan, H., Shiraishi, N., Kawase, M., Yamamoto, M., Hara, H., et al. (1982). Mitochondrial damage in galactosamine-induced liver intoxication in rats. Biochimica et Biophysica Acta, 714, 505–515.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P. Y., & Dieterle, F. (2009). Tissue-specific, non-invasive toxicity biomarkers: Translation from preclinical safety assessment to clinical safety monitoring. Expert Opinion on Drug Metabolism, 5, 1023–1038.

    Article  CAS  Google Scholar 

  • Newsome, P. N., Plevris, J. N., Nelson, L. J., & Hayes, P. C. (2000). Animal models of fulminant hepatic failure: A critical evaluation. Liver Transplantation, 6, 21–31.

    PubMed  CAS  Google Scholar 

  • Nicholls, A. W., Mortishire-Smith, R. J., & Nicholson, J. K. (2003). NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chemical Research in Toxicology, 16, 1395–1404.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (2003). Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2, 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, A., O’Maille, G., Qin, C., & Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical Chemistry, 78, 3289–3295.

    Article  PubMed  Google Scholar 

  • Novakova, L., Solichova, D., & Solich, P. (2006). Advantages of ultra performance liquid chromatography over high-performance liquid chromatography: Comparison of different analytical approaches during analysis of diclofenac gel. Journal of Separation Science, 29, 2433–2443.

    Article  PubMed  CAS  Google Scholar 

  • Ozer, J., Ratner, M., Shaw, M., Bailey, W., & Schomaker, S. (2008). The current state of serum biomarkers of hepatotoxicity. Toxicology, 245, 194–205.

    Article  PubMed  CAS  Google Scholar 

  • Petkova, D. H., Momchilova, A. B., Markovska, T. T., & Koumanov, K. S. (1987). d-galactosamine induced changes in rat liver plasma membranes lipid composition and some enzyme activities. The International Journal of Biochemistry, 19, 289–291.

    Article  PubMed  CAS  Google Scholar 

  • Schauer, N., & Fernie, A. R. (2006). Plant metabolomics: Towards biological function and mechanism. Trends in Plant Science, 11, 508–516.

    Article  PubMed  CAS  Google Scholar 

  • Stramentinoli, G., Gualano, M., & Ideo, G. (1978). Protective role of S-adenosyl-l-methionine on liver injury induced by d-galactosamine in rats. Biochemical Pharmacology, 27, 1431–1433.

    Article  PubMed  CAS  Google Scholar 

  • Tosti, E., Dahl, L., Endresen, M. J., & Henriksen, T. (1999). Endothelial degradation of extracellular lyso-phosphatidylcholine. Scandinavian Journal of Clinical and Laboratory Investigation, 59, 249–257.

    Article  PubMed  CAS  Google Scholar 

  • Tunon, M. J., Alvarez, M., Culebras, J. M., & Gonzalez-Gallego, J. (2009). An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World Journal of Gastroenterology, 15, 3086–3098.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, R. G. (2007). Idiosyncratic toxicity: A convergence of risk factors. Annual Review of Medicine, 58, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Yovchev, M. I., Grozdanov, P. N., Zhou, H., Racherla, H., Guha, C., & Dabeva, M. D. (2008). Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. Hepatology, 47, 636–647.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Q., Wang, G., Du, Y., Zhu, L., & Jiye, A. (2007). GC/MS analysis of the rat urine for metabonomic research. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 854, 20–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank B. Martínez de la Pera, C. Oceja, I. Iturriza and L. María for their technical assistance and FAES FARMA S.A. for its support with rat experimentation procedures and sample collection. This work was supported by grants from the Fondo de Investigaciones Sanitarias (Institute of Health Carlos III, 06/0621 & PS09/00526 to J.M.F.P.); Program “Ramon y Cajal” of Spanish Ministry (to J.M.F.P); Diputación Foral de Bizkaia (612TK20100014); National Institute of Health Grant R01 AT004896 (to S.C.L. and J.M. M.); Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd) is funded by the Institute of Health Carlos III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Falcon-Perez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, E., van Liempd, S., Conde-Vancells, J. et al. Serum UPLC-MS/MS metabolic profiling in an experimental model for acute-liver injury reveals potential biomarkers for hepatotoxicity. Metabolomics 8, 997–1011 (2012). https://doi.org/10.1007/s11306-011-0329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0329-9

Keywords

Navigation