Skip to main content

Advertisement

Log in

Identification of novel lignans in the whole grain rye bran by non-targeted LC–MS metabolite profiling

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Rye (Secale cereale) is among the richest dietary sources of lignan phytochemicals. Lignans are one of the suggested metabolite groups to contribute to the beneficial health effects of whole grain products evidenced in epidemiological studies. So far, the complete repertoire of lignan derivatives in rye, especially in the bran, has not been fully described. In this study, ten novel oligomeric sesqui- and dilignans were identified in rye bran by the use of high resolution LC–MS analysis (i.e., UPLC-qTOF-MS/MS). Putative identification of lignan components in the bran was performed by combining: (i) detailed inspection of the fragmentation behavior of available standard compounds belonging to different lignan types, (ii) interpretation of MS/MS data obtained from unknown metabolites in the samples. This combined analysis, particularly detailed MS/MS characterization, is most valuable for non-targeted assays in metabolite-rich matrices such as plant extracts, in which the verification of identity with authentic standards for each detected metabolite is normally not possible. Metabolomics analysis will increasingly aid in deciphering the active compounds in dietary products as part of studies aiming at elucidating the link between human health and nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adlercreutz, H., Fotsis, T., Heikkinen, R., Dwyer, J. T., Woods, M., Goldin, B. R., et al. (1982). Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet, 2, 1295–1299.

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz, H., & Mazur, W. (1997). Phyto-oestrogens and western diseases. Annals of Medicine, 29, 95–120.

    PubMed  CAS  Google Scholar 

  • Adlercreutz, H., van der Wildt, J., Kinzel, J., Attalla, H., Wahala, K., Makela, T., et al. (1995). Lignan and isoflavonoid conjugates in human urine. The Journal of Steroid Biochemistry and Molecular Biology, 52, 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Ding, Y., Deng, Z., Proksch, P., & Lin, W. (2007). Rhyncosides A-F, phenolic constituents from the Chinese mangrove plant Bruguiera sexangula var. rhynchopetala. Chemical and Pharmaceutical Bulletin, 55, 1175–1180.

    Article  CAS  Google Scholar 

  • Begum, A. N., Nicolle, C., Mila, I., Lapierre, C., Nagano, K., Fukushima, K., et al. (2004). Dietary lignins are precursors of mammalian lignans in rats. The Journal of Nutrition, 134, 120–127.

    PubMed  CAS  Google Scholar 

  • Clavel, T., Dore, J., & Blaut, M. (2006). Bioavailability of lignans in human subjects. Nutrition Research Reviews, 19, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Cutillo, F., D’Abrosca, B., DellaGreca, M., Fiorentino, A., & Zarrelli, A. (2003). Lignans and neolignans from Brassica fruticulosa: Effects on seed germination and plant growth. Journal of Agricultural and Food Chemistry, 51, 6165–6172.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, P. C., Backman, M. J., Kronberg, L. A., Smeds, A. I., & Sjoholm, R. E. (2008). Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. Journal of Mass Spectrometry: JMS, 43, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, P. C., Sundell, F. J., Smeds, A. I., & Sjoholm, R. E. (2004). Reactions of the natural lignan hydroxymatairesinol in basic and acidic nucleophilic media: Formation and reactivity of a quinone methide intermediate. Organic & Biomolecular Chemistry, 2, 2229–2235.

    Article  CAS  Google Scholar 

  • Fiorentino, A., DellaGreca, M., D’Abrosca, B., Oriano, P., Golino, A., Izzo, A., et al. (2007). Lignans, neolignans and sesquilignans from cestrum parqui l’her. Biochemical Systematics and Ecology, 35, 392–396.

    Article  CAS  Google Scholar 

  • Guo, H., Liu, A. H., Ye, M., Yang, M., & Guo, D. A. (2007). Characterization of phenolic compounds in the fruits of forsythia suspensa by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 21, 715–729.

    Article  PubMed  CAS  Google Scholar 

  • Hanhineva, K., Rogachev, I., Aura, A. M., Aharoni, A., Poutanen, K., & Mykkanen, H. (2011). Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC–MS metabolite profiling. Journal of Agricultural and Food Chemistry, 59, 921–927.

    Article  PubMed  CAS  Google Scholar 

  • Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Karenlampi, S., et al. (2008). Non-targeted analysis of spatial metabolite composition in strawberry (fragariaxananassa) flowers. Phytochemistry, 69, 2463–2481.

    Article  PubMed  CAS  Google Scholar 

  • Harmatha, J., & Dinan, L. (2003). Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. Phytochemistry Reviews, 2, 321–330.

    Article  CAS  Google Scholar 

  • Heinonen, S., Nurmi, T., Liukkonen, K., Poutanen, K., Wahala, K., Deyama, T., et al. (2001). In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. Journal of Agricultural and Food Chemistry, 49, 3178–3186.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, J. P. (1985). Lignans and neolignans from Buddleja davidii. Phytochemistry, 24, 819–826.

    Article  CAS  Google Scholar 

  • Huvenne, H., Goeminne, G., Maes, M., & Messens, E. (2008). Identification of quorum sensing signal molecules and oligolignols associated with watermark disease in willow (salix sp.). Journal of Chromatography B, 872, 83–89.

    Article  CAS  Google Scholar 

  • Knust, U., Spiegelhalder, B., Strowitzki, T., & Owen, R. W. (2006). Contribution of linseed intake to urine and serum enterolignan levels in german females: A randomised controlled intervention trial. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 44, 1057–1064.

    Article  CAS  Google Scholar 

  • Kuhnle, G. G., Dell’Aquila, C., Aspinall, S. M., Runswick, S. A., Mulligan, A. A., & Bingham, S. A. (2008). Phytoestrogen content of beverages, nuts, seeds, and oils. Journal of Agricultural and Food Chemistry, 56, 7311–7315.

    Article  PubMed  CAS  Google Scholar 

  • Kuijsten, A., Arts, I. C., Hollman, P. C., van’t Veer, P., & Kampman, E. (2006). Plasma enterolignans are associated with lower colorectal adenoma risk. Cancer Epidemiology, Biomarkers & Prevention: A Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 15, 1132–1136.

    Article  CAS  Google Scholar 

  • Liggins, J., Grimwood, R., & Bingham, S. A. (2000). Extraction and quantification of lignan phytoestrogens in food and human samples. Analytical Biochemistry, 287, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Macias, F. A., Lopez, A., Varela, R. M., Torres, A., & Molinillo, J. M. (2004). Bioactive lignans from a cultivar of Helianthus annuus. Journal of Agricultural and Food Chemistry, 52, 6443–6447.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, S., Kadota, S., Tai, T., & Kikuchi, T. (1984). Isolation and structures of hedyotisol-A, -B, and C novel dilignans from hedyotis lawsoniae. Chemical and Pharmaceutical Bulletin, 32, 5066–5069.

    Article  CAS  Google Scholar 

  • Mazur, W., Fotsis, T., Wahala, K., Ojala, S., Salakka, A., & Adlercreutz, H. (1996). Isotope dilution gas chromatographic-mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Analytical Biochemistry, 233, 169–180.

    Article  PubMed  CAS  Google Scholar 

  • Milder, I. E., Arts, I. C., van de Putte, B., Venema, D. P., & Hollman, P. C. (2005a). Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. The British Journal of Nutrition, 93, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Milder, I. E., Arts, I. C., Venema, D. P., Lasaroms, J. J., Wahala, K., & Hollman, P. C. (2004). Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Journal of Agricultural and Food Chemistry, 52, 4643–4651.

    Article  PubMed  CAS  Google Scholar 

  • Milder, I. E., Feskens, E. J., Arts, I. C., Bueno de Mesquita, H. B., Hollman, P. C., & Kromhout, D. (2005b). Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in dutch men and women. The Journal of Nutrition, 135, 1202–1207.

    PubMed  CAS  Google Scholar 

  • Morreel, K., Kim, H., Lu, F., Dima, O., Akiyama, T., Vanholme, R., et al. (2010). Mass spectrometry-based fragmentation as an identification tool in lignomics. Analytical Chemistry, 82, 8095–8105.

    Article  PubMed  CAS  Google Scholar 

  • Morreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., et al. (2004). Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiology, 136, 3537–3549.

    Article  PubMed  CAS  Google Scholar 

  • Nurmi, T., Voutilainen, S., Nyyssonen, K., Adlercreutz, H., & Salonen, J. T. (2003). Liquid chromatography method for plant and mammalian lignans in human urine. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 798, 101–110.

    Article  PubMed  CAS  Google Scholar 

  • Pan, J. Y., Chen, S. L., Yang, M. H., Wu, J., Sinkkonen, J., & Zou, K. (2009). An update on lignans: Natural products and synthesis. Natural Product Reports, 26, 1251–1292.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini, N., Valtuena, S., Ardigo, D., Brighenti, F., Franzini, L., Del Rio, D., et al. (2010). Intake of the plant lignans matairesinol, secoisolariciresinol, pinoresinol, and lariciresinol in relation to vascular inflammation and endothelial dysfunction in middle age-elderly men and post-menopausal women living in northern Italy. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 20, 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Penalvo, J. L., Adlercreutz, H., Uehara, M., Ristimaki, A., & Watanabe, S. (2008). Lignan content of selected foods from japan. Journal of Agricultural and Food Chemistry, 56, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Penalvo, J. L., Haajanen, K. M., Botting, N., & Adlercreutz, H. (2005a). Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 53, 9342–9347.

    Article  PubMed  CAS  Google Scholar 

  • Penalvo, J. L., Heinonen, S. M., Aura, A. M., & Adlercreutz, H. (2005b). Dietary sesamin is converted to enterolactone in humans. The Journal of Nutrition, 135, 1056–1062.

    PubMed  CAS  Google Scholar 

  • Popova, I. E., Hall, C., & Kubatova, A. (2009). Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry. Journal of Chromatography A, 1216, 217–229.

    Article  PubMed  CAS  Google Scholar 

  • Saleem, M., Kim, H. J., Ali, M. S., & Lee, Y. S. (2005). An update on bioactive plant lignans. Natural Product Reports, 22, 696–716.

    Article  PubMed  CAS  Google Scholar 

  • Smeds, A. I., Eklund, P. C., Sjoholm, R. E., Willfor, S. M., Nishibe, S., Deyama, T., et al. (2007). Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Journal of Agricultural and Food Chemistry, 55, 1337–1346.

    Article  PubMed  CAS  Google Scholar 

  • Smeds, A. I., Jauhiainen, L., Tuomola, E., & Peltonen-Sainio, P. (2009). Characterization of variation in the lignan content and composition of winter rye, spring wheat, and spring oat. Journal of Agricultural and Food Chemistry, 57, 5837–5842.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, H., Hisada, S., & Nishibe, S. (1984). Lignans from bark of fraximus mandshurica var japonica and F. japonica. Chemical & Pharmaceutical Bulliten (Tokyo), 32, 4482–4489.

    Article  CAS  Google Scholar 

  • Valsta, L. M., Kilkkinen, A., Mazur, W., Nurmi, T., Lampi, A. M., Ovaskainen, M. L., et al. (2003). Phyto-oestrogen database of foods and average intake in Finland. The British Journal of Nutrition, 89(Suppl 1), S31–S38.

    PubMed  CAS  Google Scholar 

  • Willfor, S. M., Smeds, A. I., & Holmbom, B. R. (2006). Chromatographic analysis of lignans. Journal of Chromatography A, 1112, 64–77.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. W., Zhao, P. J., Ma, Y. L., Xiao, H. T., Zuo, Y. Q., He, H. P., et al. (2007). Mixed lignan-neolignans from Tarenna attenuata. Journal of Natural Products, 70, 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Ye, M., Yan, Y., & Guo, D. A. (2005). Characterization of phenolic compounds in the Chinese herbal drug tu-si-zi by liquid chromatography coupled to electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 19, 1469–1484.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by the Nordforsk Nordic Centre of Excellence project “HELGA—whole grains and health” (KH, HM). Funding from Academy of Finland is gratefully acknowledged (KP). AA is the incumbent of the Adolpho and Evelyn Blum Career Development Chair. The work in the Aharoni lab was supported by the European Research Council (ERC) project SAMIT (FP7 program) and the Benoziyo Institute. We are grateful to Arye Tishbee for operating the LC–MS instrument and to Sagit Meir for assistance in LC–MS sample preparation. Michael Bailey and Olavi Myllymäki are acknowledged for technological expertise in preparation of rye fractions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Hanhineva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanhineva, K., Rogachev, I., Aura, AM. et al. Identification of novel lignans in the whole grain rye bran by non-targeted LC–MS metabolite profiling. Metabolomics 8, 399–409 (2012). https://doi.org/10.1007/s11306-011-0325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0325-0

Keywords

Navigation