Metabolomics

, Volume 7, Issue 4, pp 572–582 | Cite as

Surface fitting of 2D diffusion-edited 1H NMR spectroscopy data for the characterisation of human plasma lipoproteins

  • Roger Mallol
  • Miguel A. Rodríguez
  • Mercedes Heras
  • Maria Vinaixa
  • Nicolau Cañellas
  • Jesús Brezmes
  • Núria Plana
  • Lluís Masana
  • Xavier Correig
Original Article

Abstract

Determining the concentration and size of lipoprotein complexes is very important due to their role in cardiovascular diseases and metabolic disorders. However, standard methods for lipoprotein fractionation are manual and time consuming and cannot be used as standard diagnostic tools. Because different subclasses of lipoproteins have different radii and, hence, different diffusion velocities, we propose a fast and reliable method that uses 2D diffusion-edited 1H NMR spectroscopy to acquire a set of 2D spectra of plasma samples, followed by a surface fitting algorithm based on Lorentzian functions to estimate the sizes and the relative proportions of different lipoprotein subclasses. We were able to demonstrate that the derived sizes and positions related to the Lorentzian functions follow an exponential relationship for normolipidaemic and dislipaemic samples with coefficients of determination (r2) of 0.85 and 0.81, respectively. Moreover, we found a linear relationship between the width and size of the Lorentzian functions for normolipidaemic samples (r2 = 0.88) while for dislipaemic samples this relation was nonlinear (r2 = 0.62). Dividing our samples set into four different lipoprotein profiles (normal lipid values, low HDL/LDL ratio, high triglycerides values and both risk factors) and using principal component analysis (PCA) followed by multivariate analysis of variance (MANOVA), our method was able to statistically discriminate between those groups, with p-values of 0.0016, 0.0006, <1e−4 and 0.0035, respectively. These parameters are characteristic and indicative of different lipoprotein profiles and can be used to distinguish between normolipidaemic, hypercholesterolaemic, hypertriglyceridaemic and chylomicronaemic profiles.

Keywords

Surface fitting Diffusion coefficient 1H NMR Lipoprotein Blood plasma Dyslipidaemia 

Supplementary material

11306_2011_273_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 84 kb)

References

  1. AlaKorpela, M. (1995) H-1 NMR spectroscopy of human blood plasma. Progress in Nuclear Magnetic Resonance Spectroscopy, 27, 475–554.Google Scholar
  2. Ala-Korpela, M. (2008). Critical evaluation of H-1 NMR metabonomics of serum as a methodology for disease risk assessment and diagnostics. Clinical Chemistry and Laboratory Medicine, 46, 27–42.PubMedCrossRefGoogle Scholar
  3. AlaKorpela, M., Hiltunen, Y., & Bell, J. D. (1995). Quantification of biomedical NMR data using artificial neural network analysis: Lipoprotein lipid profiles from H-1 NMR data of human plasma. NMR in Biomedicine, 8, 235–244.CrossRefGoogle Scholar
  4. Antalek, B. (2002). Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results. Concepts in Magnetic Resonance, 14, 225–258.CrossRefGoogle Scholar
  5. Bachorik, P. S., & Ross, J. W. (1995). National-cholesterol-education-program recommendations for measurement of low-density-lipoprotein cholesterol—executive summary. Clinical Chemistry, 41, 1414–1420.PubMedGoogle Scholar
  6. Bathen, T. F., Krane, J., Engan, T., Bjerve, K. S., & Axelson, D. (2000). Quantification of plasma lipids and apolipoproteins by use of proton NMR spectroscopy, multivariate and neural network analysis. NMR in Biomedicine, 13, 271–288.PubMedCrossRefGoogle Scholar
  7. Beckwith-Hall, B. M., Thompson, N. A., Nicholson, J. K., Lindon, J. C., & Holmes, E. (2003). A metabonomic investigation of hepatotoxicity using diffusion-edited H-1 NMR spectroscopy of blood serum. Analyst, 128, 814–818.PubMedCrossRefGoogle Scholar
  8. Cantor C. R., & Schimmel, P. R. (1980). Biophysical chemistry, part ii: Techniques for the study of biological structure and function. San Francisco: W.H. Freeman.Google Scholar
  9. Chapman, M. J., Goldstein, S., Lagrange, D., & Laplaud, P. M. (1981). A density gradient ultra-centrifugal procedure for the isolation of the major lipoprotein classes from human-serum. Journal of Lipid Research, 22, 339–358.PubMedGoogle Scholar
  10. Duell, P. B., Illingworth, D. R., & Connor, W. E. (2001). Endocrinology and metabolism (4th ed.). McGraw-Hill: New York.Google Scholar
  11. Dyrby, M., Petersen, M., Whittaker, A. K., Lambert, L., Norgaard, L., Bro, R., et al. (2005). Analysis of lipoproteins using 2D diffusion-edited NMR spectroscopy and multi-way chemometrics. Analytica Chimica Acta, 531, 209–216.CrossRefGoogle Scholar
  12. Festa, A., Williams, K., Hanley, A. J. G., Otvos, J. D., Goff, D. C., Wagenknecht, L. E., et al. (2005). Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation, 111, 3465–3472.PubMedCrossRefGoogle Scholar
  13. Fossel, E. T., Carr, J. M., & McDonagh, J. (1986). Detection of malignant-tumors—water-suppressed proton nuclear-magnetic-resonance spectroscopy of plasma. New England Journal of Medicine, 315, 1369–1376.PubMedCrossRefGoogle Scholar
  14. Freedman, D. S., Otvos, J. D., Jeyarajah, E. J., Barboriak, J. J., Anderson, A. J., & Walker, J. A. (1998). Relation of lipoprotein subclasses as measured by proton nuclear magnetic resonance spectroscopy to coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1046–1053.PubMedCrossRefGoogle Scholar
  15. Friedewa, W. T, Fredrick, D. S., & Levy, R. I. (1972). Estimation of concentration of low-density lipoprotein cholesterol in plasma, without use of preparative ultracentrifuge. Clinical Chemistry, 18, 499–502.Google Scholar
  16. Gidez, L. I., Miller, G. J., Burstein, M., Slagle, S., & Eder, H. A. (1982). Separation and quantitation of subclasses of human-plasma high-density lipoproteins by a simple precipitation procedure. Journal of Lipid Research, 23, 1206–1223.PubMedGoogle Scholar
  17. Gofman, J. W., Lindgren, F. T., & Elliott, H. (1949). Ultracentrifugal studies of lipoproteins of human serum. Journal of Biological Chemistry, 179, 973–979.PubMedGoogle Scholar
  18. Jerschow, A., & Muller, N. (1997). Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments. Journal of Magnetic Resonance, 125, 372–375.CrossRefGoogle Scholar
  19. Jeyarajah, E. J., Cromwell, W. C., & Otvos, J. D. (2006). Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clinics in Laboratory Medicine, 26, 847–870.Google Scholar
  20. Jialal, I., Hirany, S. V., Devaraj, S., & Sherwood, T. A. (1995). Comparison of an immunoprecipitation method for direct measurement of LDL-cholesterol with beta-quantification (ultracentrifugation). American Journal of Clinical Pathology, 104, 76–81.PubMedGoogle Scholar
  21. Johnson, C. S. (1999). Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Progress in Nuclear Magnetic Resonance Spectroscopy, 34, 203–256.CrossRefGoogle Scholar
  22. Kesmarky, G., Kenyeres, P., Rabai, M., & Toth, K. (2008). Plasma viscosity: A forgotten variable. Clin. Hemorheol. Microcirc., 39, 243–246.PubMedGoogle Scholar
  23. Kremer, W., Kalbitzer, H. R., & Huber, F. (2008). US Patent Application 2008/0038829 A1.Google Scholar
  24. Kumpula, L. S., Makela, S. M., Makinen, V. P., Karjalainen, A., Liinamaa, J. M., Kaski, K., et al. (2010). Characterization of metabolic interrelationships and in silico phenotyping of lipoprotein particles using self-organizing maps. Journal of Lipid Research, 51, 431–439.PubMedCrossRefGoogle Scholar
  25. Lamarche, B., & Lewis, G. F. (1998). Atherosclerosis prevention for the next decade: Risk assessment beyond low density lipoprotein cholesterol. Canadian Journal of Cardiology, 14, 841–851.PubMedGoogle Scholar
  26. Lamarche, B., Moorjani, S., Cantin, B., Dagenais, G. R., Lupien, P. J., & Despres, J. P. (1997). Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men—prospective results from the Quebec cardiovascular study. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 1098–1105.PubMedCrossRefGoogle Scholar
  27. Liu, M. L., Tang, H. R., Nicholson, J. K., & Lindon, J. C. (2002). Use of H-1 NMR-determined diffusion coefficients to characterize lipoprotein fractions in human blood plasma. Magnetic Resonance in Chemistry, 40, S83–S88.CrossRefGoogle Scholar
  28. Lounila, J., Alakorpela, M., Jokisaari, J., Savolainen, M. J., & Kesaniemi, Y. A. (1994). Effects of orientational order and particle-size on the NMR line positions of lipoproteins. Physical Review Letters, 72, 4049–4052.PubMedCrossRefGoogle Scholar
  29. Nicholson, J. K., Foxall, P. J. D., Spraul, M., Farrant, R. D., & Lindon, J. C. (1995). 750-Mhz H-1 and H-1-C-13 NMR-spectroscopy of human blood-plasma. Analytical Chemistry, 67, 793–811.PubMedCrossRefGoogle Scholar
  30. Noble, R. P. (1968). Electrophoretic separation of plasma lipoproteins in agarose gel. Journal of Lipid Research, 9, 693–700.Google Scholar
  31. Otvos, J. D., Jeyarajah, E. J., Bennett, D. W., & Krauss, R. M. (1992). Development of a proton nuclear-magnetic-resonance spectroscopic method for determining plasma-lipoprotein concentrations and subspecies distributions from a single, rapid measurement. Clinical Chemistry, 38, 1632–1638.PubMedGoogle Scholar
  32. Otvos, J. D., Jeyarajah, E. J., Hayes, L. W., Freedman, D. S., Janjan, N. A., & Anderson, T. (1991). Relationships between the proton nuclear-magnetic-resonance properties of plasma-lipoproteins and cancer. Clinical Chemistry, 37, 369–376.PubMedGoogle Scholar
  33. Petersen, M., Dyrby, M., Toubro, S., Engelsen, S. B., Norgaard, L., Pedersen, H. T., et al. (2005). Quantification of lipoprotein subclasses by proton nuclear magnetic resonance-based partial least-squares regression models. Clinical Chemistry, 51, 1457–1461.PubMedCrossRefGoogle Scholar
  34. Roheim, P. S., & Asztalos, B. F. (1995). Clinical-significance of lipoprotein size and risk for coronary atherosclerosis. Clinical Chemistry, 41, 147–152.PubMedGoogle Scholar
  35. Rosenson, R. S., Shott, S., & Tangney, C. C. (2002). Hypertriglyceridemia is associated with an elevated blood viscosity Rosenson: Triglycerides and blood viscosity. Atherosclerosis, 161, 433–439.PubMedCrossRefGoogle Scholar
  36. Savorani, F., Kristensen, M., Larsen, F. H., Astrup, A., & Engelsen, S. B. (2010). High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics. Nutrition & Metabolism, 7, 8.CrossRefGoogle Scholar
  37. Schaefer, E. J., Anderson, D. W., Brewer, H. B., Levy, R. I., Danner, R. N., & Blackwelder, W. C. (1978). Plasma-triglycerides in regulation of HDL-cholesterol levels. Lancet, 2, 391–393.PubMedCrossRefGoogle Scholar
  38. Schectman, G., Patsches, M., & Sasse, E. A. (1996). Variability in cholesterol measurements: Comparison of calculated and direct LDL cholesterol determinations. Clinical Chemistry, 42, 732–737.PubMedGoogle Scholar
  39. Schumaker, V. N., & Puppione, D. L. (1986). Sequential flotation ultracentrifugation. Methods in Enzymology, 128, 155–170.PubMedCrossRefGoogle Scholar
  40. Seplowitz, A. H., Chien, S., & Smith, F. R. (1981). Effects of lipoproteins on plasma viscosity. Atherosclerosis, 38, 89–95.PubMedCrossRefGoogle Scholar
  41. Stein, E. A., & Myers, G. L. (1995). National-cholesterol-education-program recommendations for triglyceride measurement—executive summary. Clinical Chemistry, 41, 1421–1426.PubMedGoogle Scholar
  42. Suna, T., Salminen, A., Soininen, P., Laatikainen, R., Ingman, P., Makela, S., et al. (2007). H-1 NMR metabonomics of plasma lipoprotein subclasses: Elucidation of metabolic clustering by self-organising maps. NMR in Biomedicine, 20, 658–672.PubMedCrossRefGoogle Scholar
  43. Thompson, G. R. (1998). Angiographic evidence for the role of triglyceride-rich lipoproteins in progression of coronary artery disease. European Heart Journal, 19, H31–H36.PubMedGoogle Scholar
  44. Tyrrell, H. J. V., & Harris, K. R. (1984). Diffusion in liquids: A theoretical and experimental study. London: Butterworths.Google Scholar
  45. Vehtari, A., Makinen, V. P., Soininen, P., Ingman, P., Makela, S. M., Savolainen, M. J., et al. (2007). A novel Bayesian approach to quantify clinical variables and to determine their spectroscopic counterparts in H-1 NMR metabonomic data. Bmc Bioinformatics, 8(suppl 2).Google Scholar
  46. Warnick, G. R., & Wood, P. D. (1995). National-cholesterol-education-program recommendations for measurement of high-density-lipoprotein cholesterol—executive summary. Clinical Chemistry, 41, 1427–1433.PubMedGoogle Scholar
  47. Wu, P. S. C., & Otting, G. (2005). Rapid pulse length determination in high-resolution NMR. Journal of Magnetic Resonance, 176, 115–119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Roger Mallol
    • 1
    • 3
    • 4
  • Miguel A. Rodríguez
    • 1
    • 3
  • Mercedes Heras
    • 2
    • 3
  • Maria Vinaixa
    • 1
    • 3
  • Nicolau Cañellas
    • 1
    • 3
  • Jesús Brezmes
    • 1
    • 3
  • Núria Plana
    • 2
    • 3
  • Lluís Masana
    • 2
    • 3
  • Xavier Correig
    • 1
    • 3
  1. 1.Metabolomics Platform, IISPVUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Lipids and Atherosclerosis Research Unit, IISPVHospital Universitari Sant JoanReusSpain
  3. 3.CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)BarcelonaSpain
  4. 4.Departament d’Enginyeria Electrònica, Elèctrica i AutomàticaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations