Skip to main content
Log in

Sample classification of GC-ToF-MS metabolomics data without the requirement for chromatographic deconvolution

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolic footprinting has been applied as a non-invasive approach to study the behaviour and responses of cultured cells to a range of genetic and environmental perturbations. Gas chromatography interfaced with time-of-flight mass spectrometry (GC-ToF-MS) has become a powerful tool for the analysis of metabolome-derived samples. Generally, two data analysis strategies are used to interrogate and understand the biological patterns within the multi-dimensional data. The first strategy, a commoner one, uses multivariate analysis after chromatographic and mass spectral deconvolution, and the second strategy directly employs multivariate analysis of non-deconvoluted data. Here, two strategies have been assessed for the separation and classification of metabolic footprints (exometabolomes) of two strains of Candida albicans grown on three different carbon sources (glycerol, glucose and galactose). We describe a semi-automated approach that simultaneously processes all samples using the chromatographic dimension data with principal components analysis (PCA), which can include data pre-processing before PCA analysis. The preprocessed and non-deconvoluted total ion chromatogram (TIC) data showed good separation of classes defined by growth on different carbon sources and when comparing the two strains grown on the same carbon source separation was achieved for strains grown on glucose and glycerol after preprocessing. The discrimination observed is greater for preprocessed and non-deconvoluted TIC data than for that of preprocessed and non-deconvoluted single ion chromatogram data. The results from the proposed approach with those produced by MZmine were compared. The results from MZmine data depicted separations in PCA space according to carbon source, but no separation was seen when studying strains grown on the same carbon source. Our research showed that the non-deconvoluted strategy is suitable for fast comparison of large sets of GC-MS data although it will not directly provide biological information. The non-deconvoluted strategy can avoid problems of analyzing complex samples using deconvolution software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aebersold, R., Anderson, L., Caprioli, R., Druker, B., Hartwell, L., & Smith, R. (2005). Perspective: A program to improve protein biomarker discovery for cancer. Journal of Proteome Research, 4, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J., Davey, H. M., Broadhurst, D., Heald, J. K., Rowland, J. J., Oliver, S. G., et al. (2003). High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 21, 692–696.

    Article  PubMed  CAS  Google Scholar 

  • Boernsen, K. O., Gatzek, S., & Imbert, G. (2005). Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Analytical Chemistry, 77, 7255–7264.

    Article  PubMed  CAS  Google Scholar 

  • Bro, R., & Smilde, A. K. (2003). Centering and scaling in component analysis. Journal of Chemometrics, 17, 16–33.

    Article  CAS  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2, 171–196.

    Article  CAS  Google Scholar 

  • Brown, M., Dunn, W. B., Ellis, D. I., Goodacre, R., Handl, J., Knowles, J. D., et al. (2005). A metabolome pipeline: From concept to data to knowledge. Metabolomics, 1, 39–51.

    Article  CAS  Google Scholar 

  • Bundy, J. G., Willey, T. L., Castell, R. S., Ellar, D. J., & Brindle, K. M. (2005). Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiology Letters, 242, 127–136.

    Article  PubMed  CAS  Google Scholar 

  • Callister, S. J., Barry, R. C., Adkins, J. N., Johnson, E. T., Qian, W. J., Webb-Robertson, B. J. M., et al. (2006). Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. Journal of Proteome Research, 5, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Deport, C., Ratel, J., Berdague, J. L., & Engel, E. (2006). Comprehensive combinatory standard correction: A calibration method for handling instrumental drifts of gas chromatography-mass spectrometry systems. Journal of Chromatography A, 1116, 248–258.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  • Duran, A. L., Yang, J., Wang, L. J., & Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 19, 2283–2293.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, J. L., Chisolm, C. N., Shackman, J. G., & Kennedy, R. T. (2006). Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 1106, 80–88.

    Article  PubMed  CAS  Google Scholar 

  • Eilers, P. H. C. (2004). Parametric time warping. Analytical Chemistry, 76, 404–411.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, D., Broadhurst, D., Kell, D., Rowland, J., & Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Applied and environmental microbiology, 68, 2822–2828.

    Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Goodacre, R. (2004). Metabolic profiling: Pathways in discovery. Drug Discovery Today, 9, 260–261.

    Article  PubMed  Google Scholar 

  • Goodacre, R. (2007). Metabolomics of a superorganism. Journal of Nutrition, 137, 259S–266S.

    PubMed  CAS  Google Scholar 

  • Harrigan, G. G., & Goodacre, R. (Eds.). (2003). Metabolic profiling: Its role in biomarker discovery and gene function analysis. Boston: Kluwer Academic.

    Google Scholar 

  • Harrison, B., Ellis, J., Broadhurst, D., Reid, K., Goodacre, R., & Priest, F. G. (2006). Differentiation of peats used in the preparation of malt for Scotch whisky production using Fourier transform infrared spectroscopy. Journal of the Institute of Brewing, 112, 333–339.

    Google Scholar 

  • Higgs, R. E., Knierman, M. D., Gelfanova, V., Butler, J. P., & Hale, J. E. (2005). Comprehensive label-free method for the relative quantification of proteins from biological samples. Journal of Proteome Research, 4, 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  • Himmelreich, U., Somorjai, R. L., Dolenko, B., Lee, O. C., Daniel, H.-M., Murray, R., et al. (2003). Rapid identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Applied and Environmental Microbiology, 69, 4566–4574.

    Article  PubMed  CAS  Google Scholar 

  • Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716–4723.

    Article  PubMed  CAS  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.

    Article  Google Scholar 

  • Huhman, D. V., & Sumner, L. W. (2002). Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry, 59, 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Idborg-Björkman, H., Edlund, P.-O., Kvalheim, O. M., Schuppe-Koistinen, I., & Jacobsson, S. P. (2003). Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis. Analytical Chemistry, 75, 4784–4792.

    Article  PubMed  Google Scholar 

  • Jarvis, R., Clarke, S., & Goodacre, R. (2006). Rapid analysis of microbiological systems using SERS. In K. Kneipp, M. Moskovits, & H. Kneipp (Eds.), Surface-enhanced Raman scattering: Physics and applications. Topics in Applied Physics (Vol. 103, pp. 397–408). Berlin Heidelberg: Springer Verlag. ISBN: 978-3-540-33566-5.

  • Jonsson, P., Gullberg, J., Nordstrom, A., Kusano, M., Kowalczyk, M., Sjöström, M., et al. (2004). A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Analytical Chemistry, 76, 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  • Jonsson, P., Johansson, A., Gullberg, J., Trygg, J., Jiye, A., Grung, B., et al. (2005). High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Analytical Chemistry, 77, 5635–5642.

    Article  PubMed  CAS  Google Scholar 

  • Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R., & Kell, D. B. (2003). Functional genomics via metabolic footprinting: Monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT–IR and direct injection electrospray mass spectrometry. Comparative and Functional Genomics, 4, 376–391.

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Oresic, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.

    Article  PubMed  CAS  Google Scholar 

  • Katajamaa, M., & Orešič, M. (2005). Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics, 6, 179–190.

    Article  PubMed  Google Scholar 

  • Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology, 3, 557–565.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B., & Oliver, S. G. (2004). Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays, 26, 99–105.

    Article  PubMed  Google Scholar 

  • Kopka, J. (2006). Current challenges and developments in GC-MS based metabolite profiling technology. Journal of Biotechnology, 124, 312–322.

    Article  PubMed  CAS  Google Scholar 

  • Li, B. Y., Hu, Y., Liang, Y. Z., Xie, P. S., & Du, Y. P. (2004). Quality evaluation of fingerprints of herbal medicine with chromatographic data. Analytica Chimica Acta, 514, 69–77.

    Article  CAS  Google Scholar 

  • Liang, Y. Z. (Ed.). (1996). White, grey and black multicomponent systems and their chemometric algorithms. Changsha, China: Hunan Publishing House of Science and technology.

    Google Scholar 

  • Liang, Y. Z., Kvalheim, O. M., Rahmani, A., & Brereton, R. G. (1993). A 2-way procedure for background correction of chromatographic spectroscopic data by congruence analysis and least-squares fit of the zero-component regions—comparison with double-centering. Chemometrics and Intelligent Laboratory Systems, 18, 265–279.

    Article  CAS  Google Scholar 

  • Lu, H., Dunn, W. B., Shen, H., Kell, D. B., & Liang, Y. Z. (2008). Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. Trends in Analytical Chemistry, 27, 215–227.

    Article  CAS  Google Scholar 

  • Malmquist, G., & Danielsson, R. (1994). Alignment of chromatographic profiles for principal component analysis: A prerequisite for fingerprinting methods. Journal of Chromatography A, 687, 71–88.

    Article  CAS  Google Scholar 

  • Mashego, M. R., Rumbold, K., Mey, M. D., Vandamme, E., Soetaert, W., & Heijnen, J. J. (2007). Microbial metabolomics: Past, present and future methodologies. Biotechnology Letters, 29, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Mulhern, S. M., Logue, M. E., & Butler, G. (2006). Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. Eukaryotic Cell, 5, 2001–2013.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (2003). Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2, 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, N. P. V., Carstensen, J. M., & Smedsgaard, J. (1998). Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. Journal of Chromatography A, 805, 17–35.

    Article  CAS  Google Scholar 

  • O’Hagan, S. B., Dunn, W., Brown, M., Knowles, J. D., & Kell, D. B. (2005). Closed-loop, multiobjective optimization of analytical instrumentation: Gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Analytical Chemistry, 77, 290–303.

    Article  PubMed  Google Scholar 

  • O’Hagan, S., Dunn, W. B., Knowles, J. D., Broadhurst, D., Williams, R., Ashworth, J. J., et al. (2007). Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Analytical Chemistry, 79, 464–476.

    Article  PubMed  Google Scholar 

  • Oliver, S. G. (2002). Functional genomics: Lessons from yeast. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 357, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, S. G., Winson, M. K., Kell, D. B., & Baganz, F. (1998). Systematic functional analysis of the yeast genome. Trends in Biotechnology, 16, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Pope, G. A., MacKenzie, D. A., Defemez, M., Aroso, M., Fuller, L. J., Mellon, F. A., et al. (2007). Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast, 24, 667–679.

    Article  PubMed  CAS  Google Scholar 

  • Pravdova, V., Walczak, B., & Massart, D. L. (2002). A comparison of two algorithms for warping of analytical signals. Analytica Chimica Acta, 456, 77–92.

    Article  CAS  Google Scholar 

  • Raamsdonk, L. M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., et al. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Rejtar, T., Chen, H. S., Andreev, V., Moskovets, E., & Karger, B. L. (2004). Increased identification of peptides by enhanced data processing of high-resolution MALDI TOF/TOF mass spectra prior to database searching. Analytical Chemistry, 76, 6017–6028.

    Article  PubMed  CAS  Google Scholar 

  • Sadygov, R. G., Maroto, F. M., & Huhmer, A. F. R. (2006). ChromAlign: A two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Analytical Chemistry, 78, 8207–8217.

    Article  PubMed  CAS  Google Scholar 

  • Sangster, T. P., Wingate, J. E., Burton, L., Teichert, F., & Wilson, I. D. (2007). Investigation of analytical variation in metabonomic analysis using liquid chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 21, 2965–2970.

    Article  PubMed  CAS  Google Scholar 

  • Shao, X. G., Leung, A. K. M., & Chau, F. T. (2003). Wavelet: A new trend in chemistry. Accounts of Chemical Research, 36, 276–283.

    Article  PubMed  CAS  Google Scholar 

  • Shen, H. L., Wang, J. H., Liang, Y. Z., Pettersson, K., Josefson, M., Gottfries, J., et al. (1997). Chemical rank estimation by multiresolution analysis for two-way data in the presence of background. Chemometrics and Intelligent Laboratory Systems, 37, 261–269.

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak, E. (2003). Parallel analysis of transcript and metabolic profiles: A new approach in systems biology. EMBO Reports, 4, 989–993.

    Article  PubMed  CAS  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142–156.

    Article  PubMed  Google Scholar 

  • van Winden, W. A., van Dam, J. C., Ras, C., Kleijn, R. J., Vinke, J. L., van Gulik, W. M., et al. (2005). Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Research, 5, 559–568.

    Article  PubMed  Google Scholar 

  • Villas-Bôas, S. G., Roessner, U., Hansen, M. A. E., Smedsgaard, J., & Nielsen, J. (Eds.). (2007). Metabolome analysis: An introduction. New York: Wiley.

    Google Scholar 

  • Vorsta, O., de Vosa, C. H. R., Lommena, A., Stapsa, R. V., Visser, R. G. F., Binoa, R. J., et al. (2005). A non-directed approach to the differential analysis of multiple LC–MS-derived metabolic profiles. Metabolomics, 1, 169–180.

    Article  Google Scholar 

  • Xu, C.-J., Liang, Y.-Z., Chau, F.-T., & Heyden, Y. V. (2006). Pretreatments of chromatographic fingerprints for quality control of herbal medicines. Journal of Chromatography A, 1134, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Yevgeniya, I. S., Ugo, P., Boris, F. K., Wayne, R. M., & Bruce, S. K. (2005). Analytical precision, biological variation, and mathematical normalization in high data density metabolomics. Metabolomics, 1, 75–85.

    Article  Google Scholar 

  • Yi, L.-Z., He, J., Liang, Y.-Z., Yuan, D.-L., & Chau, F.-T. (2006). Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Letters, 580, 6837–6845.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The MZmine program is downloaded free; details may be obtained from the website http://mzmine.sourceforge.net/. The experimental work was carried out in the Bioanalytical Sciences Group, Department of Chemistry, and Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester. We are grateful to Warwick B. Dunn for helpful comments on the manuscript and Douglas B. Kell for his excellent scientific support. We thank Marie C. Brown and David Broadhurst for their helpful discussion. We also thank Siobhan Mulhern and Geraldine Butler of University College, Dublin for supplying the samples. This work was supported by grant China Partnering Award from BBSRC (grant PA 1479). H.L. also thanks National Natural Science Foundation of China for support of the projects (No. 20975115 and No. 20745005), China Hunan Provincial science and technology department for support of the project (No. 2009GK3095), Central South University for special support of the basic scientific research project (No. 2010QZZD007), China Postdoctoral Science Foundation for support of the project (No. 20100471230) and the Postdoctoral Science Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Gan, D., Zhang, Z. et al. Sample classification of GC-ToF-MS metabolomics data without the requirement for chromatographic deconvolution. Metabolomics 7, 191–205 (2011). https://doi.org/10.1007/s11306-010-0247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0247-2

Keywords

Navigation