Skip to main content

Advertisement

Log in

Differential metabolic response of narrow leafed lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Flavones and isoflavones are a major group of phenolic secondary metabolites which occur in leaves of narrow leafed lupine (Lupinus angustifolius) either as free aglycones or in a form of glycosides and malonyl-glycosides. Profiles of phenolic compounds in leaves of seedlings infected with anthracnose causing fungus Colletotrichum lupini were compared to those of healthy plants. A HPLC with diode array UV detector was used as the analytical method and identification of these secondary metabolites was confirmed with a HPLC/MSn instrument. Isomers of several target compounds differing in the glycosilation and/or malonylation pattern were detected in the studied samples. However, the application of standard HPLC with C18 columns resulted in the co-elution of several glyconjugates in single chromatographic peaks whereas for isoflavonoid aglycones complete resolution was achieved. Lupine plants grown in a greenhouse were either sprayed with the C. lupini spore suspension or the suspension was spotted on to wounded leaves. Profiles of the isoflavones were altered in result to infection with both methods. In particular, the concentration of isoflavone free aglycones detected in extracts from diseased plants was substantially increased in all of the studied samples. However, the pattern of these compounds depended on the age of lupine leaves as well as on the method of infection. Synthesis of luteone and 2′-hydroxygenistein was enhanced in the youngest leaves of plants sprayed with spores as well as in wound-infected leaves. Wighteone synthesis was induced mainly in older leaves of plants sprayed with the spore suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 132, 117–135.

    PubMed  CAS  Google Scholar 

  • Andersen, Ø. M., & Markham, K. R. (Eds.). (2006). FLAVONOIDS chemistry, biochemistry and applications. Boca Raton USA: CRC Press Taylor & Francis Group.

    Google Scholar 

  • Bednarek, P., Frański, R., Kerhoas, L., Einhorn, J., Wojtaszek, P., & Stobiecki, M. (2001). Profiling changes in metabolism of isoflavonoids and their conjugates in Lupinus albus treated with biotic elicitor. Phytochemistry, 56, 77–85. doi:10.1016/S0031-9422(00)00366-6.

    Article  PubMed  CAS  Google Scholar 

  • Bednarek, P., Kerhoas, L., Einhorn, J., Frański, R., Wojtaszek, P., Rybus-Zając, M., et al. (2003). Profiling of flavonoid conjugates in Lupinus albus and Lupinus angustifolius responding to biotic and abiotic stimuli. Journal of Chemical Ecology, 29, 1127–1142. doi:10.1023/A:1023877422403.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7, 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee, D. Y., Lu, Y., et al. (2008). Quality control for plant metabolomics: Reporting MSI-compliant studies. The Plant Journal, 53, 691–704. doi:10.1111/j.1365-313X.2007.03387.x.

    Article  PubMed  CAS  Google Scholar 

  • Frański, R., Bednarek, P., Siatkowska, D., Wojtaszek, P., & Stobiecki, M. (1999a). Application of mass spectrometry to structural identification of flavonoid monoglycosides isolated from shoot of lupin (Lupinus luteus L.). Acta Biochimica Polonica, 46, 459–473.

    PubMed  Google Scholar 

  • Frański, R., Bednarek, P., Wojtaszek, P., & Stobiecki, M. (1999b). Identification of flavonoid diglycosides in yellow lupin (Lupinus luteus L.) with mass spectrometric techniques. Journal of Mass Spectrometry, 34, 486–495. doi:10.1002/(SICI)1096-9888(199905)34:5<486::AID-JMS789>3.0.CO;2-4.

    Article  Google Scholar 

  • Glinski, M., & Weckwerth, W. (2006). The role of mass spectrometry in plant systems biology. Mass Spectrometry Reviews, 25, 173–214. doi:10.1002/mas.20063.

    Article  PubMed  CAS  Google Scholar 

  • Grotewold, E. (2005). Plant metabolic diversity: A regulatory perspective. Trends in Plant Science, 10, 57–62. doi:10.1016/j.tplants.2004.12.009.

    Article  PubMed  CAS  Google Scholar 

  • Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55, 481–504. doi:10.1016/S0031-9422(00)00235-1.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, J. L., Tahara, S., & Harborne, J. B. (1983). Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Zeitschrift Zür Naturforschung, 38c, 194–200.

    CAS  Google Scholar 

  • Kachlicki, P., Einhorn, J., Muth, D., Kerhoas, L., & Stobiecki, M. (2008). Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling. Journal of Mass Spectrometry, 43, 572–586. doi:10.1002/jms.1344.

    Article  PubMed  CAS  Google Scholar 

  • Kachlicki, P., Marczak, Ł., Kerhoas, L., Einhorn, J., & Stobiecki, M. (2005). Profiling isoflavone conjugates in root extracts of lupine species with LC/ESI/MSn systems. Journal of Mass Spectrometry, 40, 1088–1103. doi:10.1002/jms.884.

    Article  PubMed  CAS  Google Scholar 

  • Keller, H., Hohfeld, H., Wray, V., Halbrock, K., & Strack, D. (1996). Changes in accumulation of soluble and cell wall-bound phenolics in elicitor-treated cell suspension cultures and fungus-infected leaves of Solanum tuberosum. Phytochemistry, 42, 389–396. doi:10.1016/0031-9422(95)00866-7.

    Article  CAS  Google Scholar 

  • Laundry, L. G., Chapple, C. C. S., & Last, R. (1995). Arabidopsis mutants lacking phenolic sun screens exhibit enhanced ultraviolet-B injury oxidative damage. Plant Physiology, 109, 1159–1166. doi:10.1104/pp.109.4.1159.

    Article  Google Scholar 

  • Lozovaya, V. V., Lygin, A. V., Zernova, O. V., Li, S. X., Hartman, G. L., & Widholm, J. M. (2004). Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiology and Biochemistry, 42, 671–679. doi:10.1016/j.plaphy.2004.06.007.

    Article  PubMed  CAS  Google Scholar 

  • McLusky, S. R., Bennett, M. H., Beale, M. H., Lewis, M. J., Gaskin, P., & Mansfield, M. W. (1999). Cell wall alterations and localized accumulation of feruoyl-3-methoxytyramine in onion epidermis at sites of attempted penetration by Botrytis allii are associated with actin polarization, peroxidases activity and suppression of flavonoid biosynthesis. The Plant Journal, 17, 523–534. doi:10.1046/j.1365-313X.1999.00403.x.

    Article  CAS  Google Scholar 

  • Muth, D., Marsden-Edwards, E., Kachlicki, P., & Stobiecki, M. (2008). Differentiation of isomeric malonylated flavonoid glyconjugates in plant extracts with UPLC-ESI/MS/MS. Phytochemical Analysis, 19, 444–452. doi:10.1002/pca.1073.

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg, H. I., Feiler, U., & Hagedorn, G. (2002). Description of Colletotrichum lupini comb. nov. in modern terms. Mycologia, 94, 307–320. doi:10.2307/3761809.

    Article  Google Scholar 

  • Parniske, M., Fisher, H. M., Hennecke, H., & Werner, D. (1991). Accumulation of the phytoalexin glyceolin I in soybean nodules infected by Bradyrhizobium japonicum nif A mutant. Zeitschrift für Naturforschung, 46c, 318–320.

    Google Scholar 

  • Pedras, M. S. C., & Ahiahonu, P. W. K. (2005). Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry, 66, 391–411. doi:10.1016/j.phytochem.2005.09.013.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, J. A., & O′Neill, N. R. (2004). The characterization of defense responses to fungal infection in alfalfa. BioControl, 49, 715–728. doi:10.1007/s10526-004-5281-4.

    Article  CAS  Google Scholar 

  • Staford, H. A. (1990). Flavonoid metabolism. Boca Raton: CRC Press.

    Google Scholar 

  • Stobiecki, M., & Kachlicki, P. (2006). Isolation and identification of flavonoids. In E. Grotewold (Ed.), The science of flavonoids (pp. 47–69). New York: Springer Science and Business Media.

    Chapter  Google Scholar 

  • Stobiecki, M., Skirycz, A., Kerhoas, L., Kachlicki, P., Muth, D., Einhorn, J., et al. (2006). Profiling of phenolic glycosidic conjugates in leaves of Arabidopsis thaliana using LC/MS. Metabolomics, 2, 197–219. doi:10.1007/s11306-006-0031-5.

    Article  CAS  Google Scholar 

  • Stochmal, A., Simonet, A. M., Macias, F. A., & Oleszek, W. (2001). Alfalfa (Medicago sativa L.) flavonoids 2. Tricine and chrysoeriol from aerial parts. Journal of Agricultural and Food Chemistry, 49, 5310–5314. doi:10.1021/jf010600x.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221. doi:10.1007/s11306-007-0082-2.

    Article  CAS  Google Scholar 

  • Taylor, L. P., & Grotewold, E. (2005). Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8, 317–323. doi:10.1016/j.pbi.2005.03.005.

    Article  PubMed  CAS  Google Scholar 

  • Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4, 147–157. doi:10.1007/s10311-006-0068-8.

    Article  CAS  Google Scholar 

  • van der Greef, J., Stroobant, P., & van der Heijden, R. (2004). The role of analytical sciences in medical systems biology. Current Opinion in Chemical Biology, 8, 559–565. doi:10.1016/j.cbpa.2004.08.013.

    Article  PubMed  Google Scholar 

  • van Etten, H. D., Mansfield, J. W., Bailey, J. A., & Farmer, E. E. (1994). Two classes of plant antibiotics: Phytoalexins versus phytoanticipines. The Plant Cell, 6, 1191–1192.

    Article  Google Scholar 

  • Weckwerth, W., Wenzel, K., & Fiehn, O. (2004). Process for the integrated extraction identification, and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics, 4, 78–83. doi:10.1002/pmic.200200500.

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiology, 126, 485–493. doi:10.1104/pp.126.2.485.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish Ministry of Science (grant No 2 P06A 030 29). We are grateful to Mrs. E. Lewartowska (IPG PAS) for maintaining the fungal culture and her skilful help in infection of lupine plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Stobiecki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1s

MSn mass spectra of 12 flavonoid compounds identified in leaves of Lupinus angustifolius plants registered in positive and negative ion modes (PDF 219 kb)

Figure 2s

Average amounts of free isoflavone aglycones measured in leaves of control plants and plants sprayed with Colletotrichum lupini spore suspension (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muth, D., Kachlicki, P., Krajewski, P. et al. Differential metabolic response of narrow leafed lupine (Lupinus angustifolius) leaves to infection with Colletotrichum lupini . Metabolomics 5, 354–362 (2009). https://doi.org/10.1007/s11306-009-0162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0162-6

Keywords

Navigation