Metabolic profiling by ion mobility mass spectrometry (IMMS)

Abstract

Ion Mobility Mass Spectrometry (IMMS) was evaluated as an analytical method for metabolic profiling. The specific instrument used in these studies was a direct infusion (DI)-electrospray ionization (ESI)—ambient pressure ion mobility spectrometer (APIMS) coupled to a time-of-flight mass spectrometer (TOFMS). The addition of an ion mobility spectrometer to a mass spectrometer had several advantages over direct infusion electrospray mass spectrometry alone. This tandem instrument (ESI-IMMS) added a rapid separation step with high-resolution prior to mass spectrometric analysis of metabolite mixtures without extending sample preparation time or reducing the high through put potential of direct mass spectrometry. Further, IMMS also reduced the baseline noise common with ESI-MS analyses of complex samples and enabled rapid separation of isobaric metabolites. IMMS was used to analyze the metabolome of Escherichia coli (E. coli), containing a collection of extremely diverse chemical compounds including hydrophobic lipids, inorganic ions, volatile alcohols and ketones, amino and non-amino organic acids, and hydrophilic carbohydrates. IMMS data were collected as two-dimensional spectra showing both mobility and mass of each ion detected. Using direct infusion ESI-IMMS of a non-derivatized methanol extract of an E. coli culture, more than 500 features were detected, of which over 200 intracellular metabolites were tentatively assigned as E. coli metabolites. This analytical method also allowed simultaneous separation of isomeric metabolic features.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aharoni, A., Ric de Vos, C. H., Verhoeven Harrie, A., Maliepaard Chris, A., Kruppa, G., Bino, R., & Goodenowe Dayan, B. (2002). Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics : A Journal of Integrative Biology, 6, 217–234.

    Article  CAS  Google Scholar 

  2. Asbury, G. R., & Hill, H. H. (2000a). Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. Journal of Microcolumn Separations, 12, 172–178.

    Article  CAS  Google Scholar 

  3. Asbury, G. R., & Hill, H. H. (2000b). Using different drift cases to change separation factors (alpha) in ion mobility spectrometry. Analytical Chemistry, 72, 580–584.

    PubMed  Article  CAS  Google Scholar 

  4. Beegle, L. W., Kanik, I., Matz, L., & Hill, H. H. (2002). Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. International Journal of Mass Spectrometry, 216, 257–268.

    Article  CAS  Google Scholar 

  5. Belov, M. E., Buschbach, M. A., Prior, D. C., Tang, K., & Smith, R. D. (2007). Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Analytical Chemistry, 79, 2451–2462.

    PubMed  Article  CAS  Google Scholar 

  6. Bradbury, N. E., & Nielsen, R. A. (1936). Absolute values of the electron mobility in hydrogen. Physical Review, 49, 388.

    Article  CAS  Google Scholar 

  7. Brown Stephen, C., Kruppa, G., & Dasseux, J.-L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.

    PubMed  Article  CAS  Google Scholar 

  8. Buchholz, A., Hurlebaus, J., Wandrey, C., & Takors, R. (2002). Metabolomics: Quantification of intracellular metabolite dynamics. Biomolecular Engineering, 19, 5–15.

    PubMed  Article  CAS  Google Scholar 

  9. Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. O. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America, 104, 1777–1782.

    PubMed  Article  CAS  Google Scholar 

  10. Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.

    PubMed  Article  CAS  Google Scholar 

  11. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  12. Dwivedi, P., Bendiak, B. A., Clowers, B. H., & Hill, H. H. (2007). Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). Journal of the American Society for Mass Spectrometry, 18(7), 1163–1175.

    PubMed  Article  CAS  Google Scholar 

  13. Dwivedi, P., Wu, C., Matz, L. M., Clowers, B. H., Siems, W. F., & Hill, H. H. (2006). Gas-phase chiral separations by ion mobility spectrometry. Analytical Chemistry, 78, 8200–8206.

    PubMed  Article  CAS  Google Scholar 

  14. Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    PubMed  Article  CAS  Google Scholar 

  15. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    PubMed  Article  CAS  Google Scholar 

  16. Goodacre, R., Vaidyanathan, S., Bianchi, G., & Kell, D. B. (2002). Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst, 127, 1457–1462.

    PubMed  Article  CAS  Google Scholar 

  17. Harrigan, G. G., LaPlante, R. H., Cosma, G. N., Cockerell, G., Goodacre, R., Maddox, J. F., Luyendyk, J. P., Ganey, P. E., & Roth, R. A. (2004). Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: Contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters, 146, 197–205.

    PubMed  Article  CAS  Google Scholar 

  18. Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716–4723.

    PubMed  Article  CAS  Google Scholar 

  19. Johnson, H. E., Broadhurst, D., Kell, D. B., Theodorou, M. K., Merry, R. J., & Griffith, G. W. (2004). High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Applied and Environmental Microbiology, 70, 1583–1592.

    PubMed  Article  CAS  Google Scholar 

  20. Kast, J., Gentzel, M., Wilm, M., & Richardson, K. (2003). Noise filtering techniques for electrospray quadrupole time of flight mass spectra. Journal of the American Society for Mass Spectrometry, 14, 766–776.

    PubMed  Article  CAS  Google Scholar 

  21. Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307.

    PubMed  Article  CAS  Google Scholar 

  22. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., & Karp, P. D. (2005). EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research, 33, D334–337.

    PubMed  Article  CAS  Google Scholar 

  23. Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    PubMed  Article  CAS  Google Scholar 

  24. Louie, T. M., Webster, C. M., & Xun, L. Y. (2002). Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Journal of Bacteriology, 184, 3492–3500.

    PubMed  Article  CAS  Google Scholar 

  25. Merenbloom, S. I., Koeniger, S. L., Valentine, S. J., Plasencia, M. D., & Clemmer, D. E. (2006). IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Analytical Chemistry, 78, 2802–2809.

    PubMed  Article  CAS  Google Scholar 

  26. Nordstrom, A., O’Maille, G., Qin, C., & Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical Chemistry, 78, 3289–3295.

    PubMed  Article  Google Scholar 

  27. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.

    PubMed  Article  CAS  Google Scholar 

  28. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.

    PubMed  Article  CAS  Google Scholar 

  29. Steiner, W. E., Clowers, B. H., Fuhrer, K., Gonin, M., Matz, L. M., Siems, W. F., Schultz, A. J., & Hill, H. H. (2001). Electrospray ionization with ambient pressure ion mobility separation and mass analysis by orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 15, 2221–2226.

    PubMed  Article  CAS  Google Scholar 

  30. Steiner, W. E., Clowers, B. H., & Hill, H. H. (2003). Rapid separation of phenylthiohydantoin amino acids: Ambient pressure ion-mobility mass spectrometry (IMMS). Analytical and Bioanalytical Chemistry, 375, 99–102.

    PubMed  CAS  Google Scholar 

  31. Steiner, W. E., English, W. A., & Hill, H. H. (2005). Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof)MS). Analytica Chimica Acta, 532, 37–45.

    Article  CAS  Google Scholar 

  32. Vaidyanathan, S., Kell, D. B., & Goodacre, R. (2002). Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry, 13, 118–128.

    PubMed  Article  CAS  Google Scholar 

  33. Vaidyanathan, S., Rowland, J. J., Kell, D. B., & Goodacre, R. (2001). Discrimination of aerobic endospore-forming bacteria via electrospray-ionization mass spectrometry of whole cell suspensions. Analytical Chemistry, 73, 4134–4144.

    PubMed  Article  CAS  Google Scholar 

  34. Voyksner, R. D., & Lee, H. (1999). Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 1427–1437.

    PubMed  Article  CAS  Google Scholar 

  35. Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 817, 67–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by a research grant from Department of Health and Human Service: Public Health Services organization (Road Map Grant No. R21 DK070274). We also wish to express our appreciation to Dr. Al Schultz, Agnes Tempez, and Thomas F. Egan at IonWerks in Houston, TX for their help and discussions throughout this project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Herbert H. Hill Jr.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dwivedi, P., Wu, P., Klopsch, S.J. et al. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 4, 63–80 (2008). https://doi.org/10.1007/s11306-007-0093-z

Download citation

Keywords

  • Ion mobility spectrometry
  • Metabolomics
  • Mass spectrometry
  • E coli metabolome
  • Electrospray ionization