Metabolomics

, Volume 4, Issue 1, pp 63–80 | Cite as

Metabolic profiling by ion mobility mass spectrometry (IMMS)

  • Prabha Dwivedi
  • Peiying Wu
  • Steve J. Klopsch
  • Geoffrey J. Puzon
  • Luying Xun
  • Herbert H. HillJr
Original Article

Abstract

Ion Mobility Mass Spectrometry (IMMS) was evaluated as an analytical method for metabolic profiling. The specific instrument used in these studies was a direct infusion (DI)-electrospray ionization (ESI)—ambient pressure ion mobility spectrometer (APIMS) coupled to a time-of-flight mass spectrometer (TOFMS). The addition of an ion mobility spectrometer to a mass spectrometer had several advantages over direct infusion electrospray mass spectrometry alone. This tandem instrument (ESI-IMMS) added a rapid separation step with high-resolution prior to mass spectrometric analysis of metabolite mixtures without extending sample preparation time or reducing the high through put potential of direct mass spectrometry. Further, IMMS also reduced the baseline noise common with ESI-MS analyses of complex samples and enabled rapid separation of isobaric metabolites. IMMS was used to analyze the metabolome of Escherichiacoli (E. coli), containing a collection of extremely diverse chemical compounds including hydrophobic lipids, inorganic ions, volatile alcohols and ketones, amino and non-amino organic acids, and hydrophilic carbohydrates. IMMS data were collected as two-dimensional spectra showing both mobility and mass of each ion detected. Using direct infusion ESI-IMMS of a non-derivatized methanol extract of an E. coli culture, more than 500 features were detected, of which over 200 intracellular metabolites were tentatively assigned as E. coli metabolites. This analytical method also allowed simultaneous separation of isomeric metabolic features.

Keywords

Ion mobility spectrometry Metabolomics Mass spectrometry E coli metabolome Electrospray ionization 

Notes

Acknowledgments

This project was supported in part by a research grant from Department of Health and Human Service: Public Health Services organization (Road Map Grant No. R21 DK070274). We also wish to express our appreciation to Dr. Al Schultz, Agnes Tempez, and Thomas F. Egan at IonWerks in Houston, TX for their help and discussions throughout this project.

References

  1. Aharoni, A., Ric de Vos, C. H., Verhoeven Harrie, A., Maliepaard Chris, A., Kruppa, G., Bino, R., & Goodenowe Dayan, B. (2002). Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics : A Journal of Integrative Biology, 6, 217–234.CrossRefGoogle Scholar
  2. Asbury, G. R., & Hill, H. H. (2000a). Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. Journal of Microcolumn Separations, 12, 172–178.CrossRefGoogle Scholar
  3. Asbury, G. R., & Hill, H. H. (2000b). Using different drift cases to change separation factors (alpha) in ion mobility spectrometry. Analytical Chemistry, 72, 580–584.PubMedCrossRefGoogle Scholar
  4. Beegle, L. W., Kanik, I., Matz, L., & Hill, H. H. (2002). Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. International Journal of Mass Spectrometry, 216, 257–268.CrossRefGoogle Scholar
  5. Belov, M. E., Buschbach, M. A., Prior, D. C., Tang, K., & Smith, R. D. (2007). Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Analytical Chemistry, 79, 2451–2462.PubMedCrossRefGoogle Scholar
  6. Bradbury, N. E., & Nielsen, R. A. (1936). Absolute values of the electron mobility in hydrogen. Physical Review, 49, 388.CrossRefGoogle Scholar
  7. Brown Stephen, C., Kruppa, G., & Dasseux, J.-L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.PubMedCrossRefGoogle Scholar
  8. Buchholz, A., Hurlebaus, J., Wandrey, C., & Takors, R. (2002). Metabolomics: Quantification of intracellular metabolite dynamics. Biomolecular Engineering, 19, 5–15.PubMedCrossRefGoogle Scholar
  9. Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. O. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America, 104, 1777–1782.PubMedCrossRefGoogle Scholar
  10. Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.PubMedCrossRefGoogle Scholar
  11. Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24, 285–294.CrossRefGoogle Scholar
  12. Dwivedi, P., Bendiak, B. A., Clowers, B. H., & Hill, H. H. (2007). Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). Journal of the American Society for Mass Spectrometry, 18(7), 1163–1175.PubMedCrossRefGoogle Scholar
  13. Dwivedi, P., Wu, C., Matz, L. M., Clowers, B. H., Siems, W. F., & Hill, H. H. (2006). Gas-phase chiral separations by ion mobility spectrometry. Analytical Chemistry, 78, 8200–8206.PubMedCrossRefGoogle Scholar
  14. Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.PubMedCrossRefGoogle Scholar
  15. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.PubMedCrossRefGoogle Scholar
  16. Goodacre, R., Vaidyanathan, S., Bianchi, G., & Kell, D. B. (2002). Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst, 127, 1457–1462.PubMedCrossRefGoogle Scholar
  17. Harrigan, G. G., LaPlante, R. H., Cosma, G. N., Cockerell, G., Goodacre, R., Maddox, J. F., Luyendyk, J. P., Ganey, P. E., & Roth, R. A. (2004). Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: Contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters, 146, 197–205.PubMedCrossRefGoogle Scholar
  18. Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716–4723.PubMedCrossRefGoogle Scholar
  19. Johnson, H. E., Broadhurst, D., Kell, D. B., Theodorou, M. K., Merry, R. J., & Griffith, G. W. (2004). High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Applied and Environmental Microbiology, 70, 1583–1592.PubMedCrossRefGoogle Scholar
  20. Kast, J., Gentzel, M., Wilm, M., & Richardson, K. (2003). Noise filtering techniques for electrospray quadrupole time of flight mass spectra. Journal of the American Society for Mass Spectrometry, 14, 766–776.PubMedCrossRefGoogle Scholar
  21. Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307.PubMedCrossRefGoogle Scholar
  22. Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., & Karp, P. D. (2005). EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research, 33, D334–337.PubMedCrossRefGoogle Scholar
  23. Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.PubMedCrossRefGoogle Scholar
  24. Louie, T. M., Webster, C. M., & Xun, L. Y. (2002). Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Journal of Bacteriology, 184, 3492–3500.PubMedCrossRefGoogle Scholar
  25. Merenbloom, S. I., Koeniger, S. L., Valentine, S. J., Plasencia, M. D., & Clemmer, D. E. (2006). IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Analytical Chemistry, 78, 2802–2809.PubMedCrossRefGoogle Scholar
  26. Nordstrom, A., O’Maille, G., Qin, C., & Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical Chemistry, 78, 3289–3295.PubMedCrossRefGoogle Scholar
  27. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.PubMedCrossRefGoogle Scholar
  28. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.PubMedCrossRefGoogle Scholar
  29. Steiner, W. E., Clowers, B. H., Fuhrer, K., Gonin, M., Matz, L. M., Siems, W. F., Schultz, A. J., & Hill, H. H. (2001). Electrospray ionization with ambient pressure ion mobility separation and mass analysis by orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 15, 2221–2226.PubMedCrossRefGoogle Scholar
  30. Steiner, W. E., Clowers, B. H., & Hill, H. H. (2003). Rapid separation of phenylthiohydantoin amino acids: Ambient pressure ion-mobility mass spectrometry (IMMS). Analytical and Bioanalytical Chemistry, 375, 99–102.PubMedGoogle Scholar
  31. Steiner, W. E., English, W. A., & Hill, H. H. (2005). Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof)MS). Analytica Chimica Acta, 532, 37–45.CrossRefGoogle Scholar
  32. Vaidyanathan, S., Kell, D. B., & Goodacre, R. (2002). Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry, 13, 118–128.PubMedCrossRefGoogle Scholar
  33. Vaidyanathan, S., Rowland, J. J., Kell, D. B., & Goodacre, R. (2001). Discrimination of aerobic endospore-forming bacteria via electrospray-ionization mass spectrometry of whole cell suspensions. Analytical Chemistry, 73, 4134–4144.PubMedCrossRefGoogle Scholar
  34. Voyksner, R. D., & Lee, H. (1999). Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 1427–1437.PubMedCrossRefGoogle Scholar
  35. Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 817, 67–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Prabha Dwivedi
    • 1
  • Peiying Wu
    • 1
  • Steve J. Klopsch
    • 1
  • Geoffrey J. Puzon
    • 2
  • Luying Xun
    • 2
  • Herbert H. HillJr
    • 1
  1. 1.Department of ChemistryWashington State UniversityPullmanUSA
  2. 2.School of Molecular BiosciencesWashington State UniversityPullmanUSA

Personalised recommendations