Study of metabolite composition of eccrine sweat from healthy male and female human subjects by 1H NMR spectroscopy

Abstract

The aim of the study was to evaluate metabolite variability in human eccrine sweat using a metabonomics based approach. Eccrine sweat is a dilute electrolyte solution whose primary function is to control body temperature via evaporative cooling. Although the composition of sweat is primarily water, previous studies have shown that a diverse array of organic and inorganic compounds are also present. Human eccrine sweat samples from 30 female and 30 male subjects were analysed using high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy in conjunction with statistical pattern recognition. High-resolution 1H NMR spectroscopy produced spectra of the sweat samples that readily identified and quantified many different metabolites. The major metabolite classes found to be present were lactate, amino acids and lipids, with lactate being by far the most dominant metabolite found in all samples. Principal Components Analysis, Principal Components-Discriminant Analysis and Partial Least Squares-Discriminant Analysis of the eccrine sweat samples, revealed no significant differences in metabolite composition and concentration between female and male subjects. Also, the variation between subjects did not appear to be correlated with any other clinical information provided by the subjects. Overall, the spectra data set demonstrates the large physiological variability in terms of number of metabolites present and concentrations between subjects i.e. human eccrine sweat samples exhibit a high degree of inter-individual variability.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

References

  1. Al-Tamer Y.Y., Hadi E.A., Al-Badrani I.I. (1997) Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urol. Res. 25: 337–340

    PubMed  CAS  Article  Google Scholar 

  2. Beckwith-Hall B.M., Brindle J.T., Barton R.H., Coen M., Holmes E., Nicholson J.K., Antti H. (2002) Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst 127: 1283–1288

    PubMed  CAS  Article  Google Scholar 

  3. Berglund L.G., McNall P.E. (1973). Human sweat film area and composition during prolonged sweating. J. Appl. Physiol. 35: 714–718

    PubMed  CAS  Google Scholar 

  4. Bijman J., Quinton P.M. (1987) Lactate and bicarbonate uptake in the sweat-duct of cystic-fibrosis and normal subjects. Pediatr. Res. 21:79–82

    PubMed  CAS  Google Scholar 

  5. Brindle J.T., Antti H., Holmes E., Tranter G., Nicholson J.K., Bethell H.W.L., Clarke S., Schofield P.M., McKillingin E., Mosedale D.E., Grainger D.J. (2002). Rapid and non-invasive diagnosis of the presence and severity of coronary heart disease. Nat. Med. 8: 1439–1444

    PubMed  CAS  Article  Google Scholar 

  6. Coltman C.A., Rowe N.J., Atwell R.J. (1966) The amino acid content of sweat in normal adults. Am. J. Clin. Nutr. 18: 373–378

    PubMed  CAS  Google Scholar 

  7. Daykin C.A., Duynhoven J.P.M., Groenewegen A., Dachtler M., Van Amelsyoort J.M.M., Mulder T.P.J. (2005) Nuclear magnetic resonance spectroscopic based studies of the metabolism of black tea polyphenols in humans. J. Agr. Food Chem. 53: 1428–1434

    CAS  Article  Google Scholar 

  8. Embden G., Tachau H. (1910) Über das vorkommen von serin im menschlichen schweiβe (About the exsistence of serine in human sweat). Biochem. Z. 28: 230–236

    Google Scholar 

  9. Eriksson L., Johansson E., Kettaneh-Wold N., Wold S. (1999) Introduction to Multi- and Mega-variate Data Analysis using Projection Methods. Umetrics, Umea, Sweden

    Google Scholar 

  10. Fernie A.R., Trethewey R.N., Krotzky A.J., Willmitzer L. (2004) Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5: 763–769

    PubMed  CAS  Article  Google Scholar 

  11. Förström L., Goldyne M.E., Winkelmann R.K. (1974) Prostaglandin activity in human eccrine sweat. Prostaglandins. 7: 459–464

    PubMed  Article  Google Scholar 

  12. Frewin D.B., Eakins K.E., Downey J.A., Bhattacherjee P. (1973) Prostaglandin-like activity in human eccrine sweat. Aust. J. Exp. Biol. Med. Sci. 51: 701–705

    PubMed  CAS  Google Scholar 

  13. Gavaghan C.L., Wilson I.D., Nicholson J.K. (2002) Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett. 530: 191–196

    PubMed  CAS  Article  Google Scholar 

  14. Gitlitz P.H., Sunderman F.W., Hohnadel D.C. (1974) Ion-exchange chromatography of amino acids in sweat collected from healthy subjects during sauna bathing. Clin. Chem. 20: 1305–1312

    PubMed  CAS  Google Scholar 

  15. Gordon R.S., Ronald J.R., Thompson H., Muenzer J., Thrasher D. (1971) Sweat lactate in man is derived from blood glucose. Appl. Physiol. 31: 713–716

    CAS  Google Scholar 

  16. Griffin J.L. (2003) Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr. Opin. Chem. Biol. 7: 648–654

    PubMed  CAS  Article  Google Scholar 

  17. Griffin J.L., Anthony D.C., Campbell S.J., Gauldie J., Pitossi F., Styles P., Sibson N.R. (2004) Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Lett. 568: 49–54

    PubMed  CAS  Article  Google Scholar 

  18. Keun H.C., Ebbels T.M.D., Antti H., Bollard M.E., Beckonert O., Schlotterbeck G., Senn H., Niederhauser U., Holmes E., Lindon J.C., Nicholson J.K. (2002) Analytical reproducibility in 1H NMR-based metabonomic urinalysis. Chem. Res. Toxicol. 15: 1380–1386

    PubMed  CAS  Article  Google Scholar 

  19. Keun H.C., Ebbels T.M.D., Antti H., Bollard M.E., Beckonert O., Holmes E., Lindon J.C., Nicholson J.K. (2003) Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal. Chim. Acta 490: 265–276

    CAS  Article  Google Scholar 

  20. Lenz E.M., Bright J., Wilson I.D., Morgan S.R., Nash A.F.P. (2003) A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J. Pharm. Biomed. Anal. 33: 1103–1115

    PubMed  CAS  Article  Google Scholar 

  21. Liappis N., Hungerland H. (1972) Quantitative study of free amino acids in human eccrine sweat during normal conditions and exercise. Am. J. Clin. Nutr. 25: 661–663

    PubMed  CAS  Google Scholar 

  22. Liappis N., Kelderbacher S.D., Kesseler K., Bantzer P. (1979) Quantitative study of free amino acids in human eccrine sweat excreted from the forearms of healthy trained and untrained men during exercise. Eur. J. Appl. Physiol. 42: 227–234

    CAS  Article  Google Scholar 

  23. Liappis, N., Kochbeck, E., Eckhardt, G., Hahne, H., Kesseler, K. and Bantzer, P. (1980) Aminosäurenverluste im menschlichen Schweiß – Einfluß von hormoneinnahme, körperlichem training und vom geschlecht auf die aminosäurenausscheidung in schweiß (Amino acid losses in human sweat – Influence of oral contraceptives, physical exercise and sex on the excretion of amino acids in sweat). Arch. Dermatol. Res. 269, 311–323.

    Article  Google Scholar 

  24. Lindon J.C., Nicholson J.K., Wilson I.D. (2000) Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. J. Chrom. B 748: 233–258

    CAS  Google Scholar 

  25. Massart D.L., Kaufman P. (1983). The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. John Wiley and Sons, New York

    Google Scholar 

  26. Nicholson J.K., Buckingham M.J., Sadler P.J. (1983) High resolution H-1-NMR studies of vertebrate blood and plasma. Biochem. J. 211: 605–615

    PubMed  CAS  Google Scholar 

  27. Nicholson J.K., Sadler P.J., Bales J.R., Juul S.M., Macleod A.F., Sonksen P.H. (1984) Monitoring metabolic disease by proton nmr of urine. Lancet 324: 751–752

    Article  Google Scholar 

  28. Nicholson J.K., Foxall P.J.D., Spraul M., Farrant R.D., Lindon J.C. (1995) 750-MHZ H-1 and H-1-C-13 NMR-spectroscopy of human blood-plasma. Anal. Chem. 67: 793–811

    PubMed  CAS  Article  Google Scholar 

  29. Peter G., Schröpl F., Feisel H.G., Thürauf W. (1970). Gaschromatographische untersuchungen von freien und gebundenen fettsäuren im ekkrinen schweiss. Arch. Klin. Exp. Dermatol. 238: 154–162

    PubMed  CAS  Article  Google Scholar 

  30. Quinton P.M., Elder H.Y., McEwan Jenkinson D., Bovell D.L. (1999). Structure and function of human sweat glands. In: Laden K., Felger C.B. (eds) Antiperspirants and Deodorants (Cosmetic Science & Technology Series/Vol. 20), 2nd ed., Marcel Dekker Inc., New York, pp. 17–57

    Google Scholar 

  31. Sato K. (1977) The physiology, pharmacology, and biochemistry of the eccrine sweat gland. Rev. Physiol. Biochem. Pharmacol. 79:51–131

    PubMed  CAS  Article  Google Scholar 

  32. Taylor R.P., Polliack A.A., Bader D.L. (1994) The analysis of metabolites in human sweat: analytical methods and potential application to investigation of pressure ischaemia of soft tissues. Ann. Clin. Biochem. 31: 18–24

    PubMed  CAS  Google Scholar 

  33. Vandeginste B.G.M., Massart D.L., Buydens L.C.M., De Jong S., Lewi P.J., Smeyers-Verbeke J. (1998). Handbook of Chemometrics and Qualimetrics: Part B. Elsevier, Amsterdam

    Google Scholar 

  34. Weiner J.S., van Heyningen R.E. (1952) Observations on lactate content of sweat. J. Appl. Physiol. 4: 734–744

    PubMed  CAS  Google Scholar 

  35. Wolfe S., Cage G., Epstein M., Tice L., Miller H., Gordon R.S. (1970) Metabolic studies of isolated human eccrine sweat glands. J. Clin. Invest. 49: 1880–1884

    PubMed  CAS  Google Scholar 

  36. Yokoyama Y., Aragaki M., Sato H., Tsuchiya M. (1991) Determination of sweat constituents by liquid ionization mass spectrometry. Anal. Chim. Acta. 246: 405–411

    CAS  Article  Google Scholar 

  37. Yoshikawa K., Matsushita K., Ohsaka A. (1982) 1H-NMR spectroscopy in aqueous mediums. Examination of experimental conditions with human urine as a model sample. Physiol. Chem. Phys. 14: 385–389

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark Harker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harker, M., Coulson, H., Fairweather, I. et al. Study of metabolite composition of eccrine sweat from healthy male and female human subjects by 1H NMR spectroscopy. Metabolomics 2, 105–112 (2006). https://doi.org/10.1007/s11306-006-0024-4

Download citation

Keywords

  • gender
  • metabonomics
  • principal components analysis