Advertisement

Metabolomics

, Volume 1, Issue 1, pp 11–15 | Cite as

Metabolic targeted therapy of cancer: current tracer technologies and future drug design strategies in the old metabolic network

  • László G. BorosEmail author
Open Access
Article

Targeted drugs tailored against genes and signaling proteins have formed the new era termed Targeted Therapies. Although the field is relatively young, since only about 5 years ago clinical trials started showing promise, there have are already been significant setbacks due to drug resistance caused by point mutations, alterations in gene expression or complete loss of target proteins with disease progression. Although new drugs are continuously designed and tried, it seems inevitable that genetic and signal protein targets pose too broad flexibility and variability, often changing target characteristics and thus escape treatments turning “magic bullets” into rather “wondering bullets”. This is especially true in cancer, where old and new targeted therapies continue to fail and the most recent ones do not offer much improvement on clinical outcome parameters. Metabolic targeted therapies are aimed at control points of the metabolic network by targeting particular enzymes of major macromolecule synthesis pathways in cancer. This review summarizes the potential benefits of targeted therapies in the metabolic network as applied with genetic and proteomic approaches. The metabolic target approach is most efficient if and when pathway flux information is available for drug target development using the stable isotope based dynamic metabolic profile (SIDMAP) of tumor cells, in vitro or in vivo.

Key words

intermediary metabolism stable isotope tracers drug design cancer 

References

  1. Baron, A., Migita, T., Tang, D., Loda, M. 2004Fatty acid synthase: a metabolic oncogene in prostate cancer?J. Cell. Biochem.914753CrossRefPubMedGoogle Scholar
  2. Boekhorst, P.A., Lowenberg, B., van Kapel, J., Nooter, K., Sonneveld, P. 1995Multidrug resistant cells with high proliferative capacity determine response to therapy in acute myeloid leukemiaLeukemia910251031PubMedGoogle Scholar
  3. Boren, J., Cascante, M., Marin, S.,  et al. 2001Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cellsJ. Biol. Chem.2763774737753PubMedGoogle Scholar
  4. Boros, L.G., Puigjaner, J., Cascante, M.,  et al. 1997Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferationCancer Res.5742424248PubMedGoogle Scholar
  5. Boros, L.G., Bassilian, S., Lim, S., Lee, W.N. 2001aGenistein inhibits non-oxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growthPancreas2217CrossRefGoogle Scholar
  6. Boros, L.G., Lapis, K., Szende, B.,  et al. 2001bWheat germ extract decreases glucose uptake and RNA ribose formation but increases fatty acid synthesis in MIA pancreatic adenocarcinoma cellsPancreas23141147CrossRefGoogle Scholar
  7. Boros, L.G., Lee, W.N., Go, V.L. 2002aA metabolic hypothesis of cell growth and death in pancreatic cancerPancreas242633CrossRefGoogle Scholar
  8. Boros, L.G., Cascante, M., Lee, W.N. 2002bMetabolic profiling of cell growth and death in cancer: applications in drug discoveryDrug Discov. Today7364372CrossRefGoogle Scholar
  9. Boros, L.G., Brackett, D.J., Harrigan, G.G. 2003aMetabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP)Curr. Cancer Drug Targets3445453CrossRefGoogle Scholar
  10. Boros, L.G., Steinkamp, M.P., Fleming, J.C., Lee, W.N., Cascante, M., Neufeld, E.J. 2003bDefective RNA ribose synthesis in fibroblasts from patients with thiamine-responsive megaloblastic anemia (TRMA)Blood10235563561CrossRefGoogle Scholar
  11. Boros, L.G., Cascante, M., Lee, W.-N.P. 2003cStable isotope-based dynamic metabolic profiling in disease and healthHarrigan, G.G.Goodacre, R. eds. Metabolic profiling: its role in biomarker discovery and gene function analysisKluwer Academic PublishersBostonGoogle Scholar
  12. Boros L.G. (2004). Metabolic profile of inflammatory breast cancer: aiding diagnosis and treatment. George Washington University and the IBC Research Foundation co-sponsored “IBC Mini Symposium” hosted by George Washington University: http://www.ibcresearch.org/ibcminisymposium/Google Scholar
  13. Cowan-Jacob, S.W., Guez, V., Fendrich, G.,  et al. 2004Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatmentMini Rev. Med. Chem.4285299CrossRefPubMedGoogle Scholar
  14. Dancey, J.E., Freidlin, B. 2003Targeting epidermal growth factor receptor – Are we missing the mark?Lancet3626264CrossRefPubMedGoogle Scholar
  15. Danzon, P., Towse, A. 2002The economics of gene therapy and of pharmacogeneticsValue Health5513CrossRefPubMedGoogle Scholar
  16. Eigenbrodt, E., Reinacher, M., Scheefers-Borchel, U., Scheefers, H., Friis, R. 1992Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cellsCrit. Rev. Oncog.391115PubMedGoogle Scholar
  17. Green, R. 2003Mystery of thiamine-responsive megaloblastic anemia unlockedBlood10234643465CrossRefGoogle Scholar
  18. Griffin, J.L. 2004Metabolic profiles to define the genome: can we hear the phenotypes?Philos. Trans. R. Soc. Lond. B Biol. Sci.359857871CrossRefPubMedGoogle Scholar
  19. Guillemard, V., Saragovi, H.U. 2004Novel approaches for targeted cancer therapyCurr. Cancer Drug Targets4313326CrossRefPubMedGoogle Scholar
  20. Hofmann, W.K., Komor, M., Hoelzer, D., Ottmann, O.G. 2004Mechanisms of resistance to STI571 (Imatinib) in Philadelphia-chromosome positive acute lymphoblastic leukemiaLeuk. Lymphoma45655660CrossRefPubMedGoogle Scholar
  21. Hu, W., Kavanagh, J.J. 2003Anticancer therapy targeting the apoptotic pathwayLancet Oncol.4721729CrossRefPubMedGoogle Scholar
  22. Kuhajda, F.P. 2000Fatty-acid synthase and human cancer: new perspectives on its role in tumor biologyNutrition16202208CrossRefPubMedGoogle Scholar
  23. Matzku, S., Krempel, H., Weckenmann, H.P., Schirrmacher, V., Sinn, H., Stricker, H. 1990Tumor targeting with antibody-coupled liposomes: failure to achieve accumulation in xenografts and spontaneous liver metastases.Cancer Immunol. Immunother.31285291CrossRefPubMedGoogle Scholar
  24. Nemecek, E.R., Matthews, D.C. 2003Use of radiolabeled antibodies in the treatment of childhood acute leukemiaPediatr. Transplant.38994CrossRefGoogle Scholar
  25. Pitot, H.C., Jost, J.P. 1967Control of biochemical expression in morphologically related cells in vivo and in vitroNatl. Cancer Inst. Monogr.26145166PubMedGoogle Scholar
  26. Rudin, C.M., Holmlund, J., Fleming, G.F.,  et al. 2001Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancerClin. Cancer Res.712141220PubMedGoogle Scholar
  27. Schmidt, C. 2004Metabolomics takes its place as latest up-and-coming “omic” scienceJ. Natl. Cancer Inst.96732734PubMedGoogle Scholar
  28. Schwartz, A.G., Pashko, L., Whitcomb, J.M. 1986Inhibition of tumor development by dehydroepiandrosterone and related steroidsToxicol. Pathol.14357362PubMedGoogle Scholar
  29. Shah, N.P., Tran, C., Lee, F.Y., Chen, P., Norris, D., Sawyers, C.L. 2004Overriding imatinib resistance with a novel ABL kinase inhibitorScience305399401CrossRefPubMedGoogle Scholar
  30. Sievers, E.L. 2000Targeted therapy of acute myeloid leukemia with monoclonal antibodies and immunoconjugatesCancer Chemother. Pharmacol.46S18S22PubMedGoogle Scholar
  31. Smith, T.A. 1998FDG uptake, tumor characteristics and response to therapy: a reviewNucl. Med. Commun.1997105PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.SIDMAP, LLC and Los Angeles Biomedical Research Institute at Harbor-UCLA Medical CenterLos AngelesUSA

Personalised recommendations