Advertisement

Metabolomics

, Volume 1, Issue 4, pp 325–339 | Cite as

Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells

  • Teresa W. M. FanEmail author
  • Laura L. Bandura
  • Richard M. Higashi
  • Andrew N. Lane
Article

 

Transcriptomic analysis is an essential tool for systems biology but it has been stymied by a lack of global understanding of genomic functions, resulting in the inability to link functionally disparate gene expression events. Using the anticancer agent selenite and human lung cancer A549 cells as a model system, we demonstrate that these difficulties can be overcome by a progressive approach which harnesses the emerging power of metabolomics for transcriptomic analysis. We have named the approach Metabolomics-edited transcriptomic analysis (META). The main analytical engine was 13C isotopomer profiling using a combination of multi-nuclear 2-D NMR and GC-MS techniques. Using 13C-glucose as a tracer, multiple disruptions to the central metabolic network in A549 cells induced by selenite were defined. META was then achieved by coupling the metabolic dysfunctions to altered gene expression profiles to: (1) provide new insights into the regulatory network underlying the metabolic dysfunctions; (2) enable the assembly of disparate gene expression events into functional pathways that was not feasible by transcriptomic analysis alone. This was illustrated in particular by the connection of mitochondrial dysfunctions to perturbed lipid metabolism via the AMP-AMPK pathway. Thus, META generated both extensive and highly specific working hypotheses for further validation, thereby accelerating the resolution of complex biological problems such as the anticancer mechanism of selenite.

Keywords

(3-6) two-dimensional NMR GC-tandem MS 13C isotopomer profiling selenite lung adenocarcinoma A549 cells 

Abbreviations

1H–13C HMBC

1H–13C heteronuclear multiple bond correlation spectroscopy

1H–13C HSQC

1H–13C heteronuclear single quantum coherence spectroscopy

2-D 1H TOCSY

two dimensional 1H total correlation spectroscopy

[U−13C]-glucose

uniformly 13C-labeled glucose

GC

gas chromatography

META

metabolomics-edited transcriptomic analysis

MSn

mass spectrometry to the nth dimension

MTBSTFA

N-methyl-N-[tert-butyldimethylsilyl]trifluoroacetamide

NMR

nuclear magnetic resonance spectroscopy

P-choline or PC

phosphorylcholine

PDA

photodiode array

TCA

trichloroacetic acid

Notes

Acknowledgments

This work was supported by NCI Grant 1 R01 CA101199-01, the JG Brown Foundation for the NMR facility and Microarray facility of the JG Brown Cancer Center and NSF EPSCoR Grant EPS-0132295 for the 18.8 T NMR spectrometer (to R.J. Wittebort) and NSF EPSCoR grant EPS-0447479 (to T.W.-M. Fan). ANL thanks the Kentucky Challenge for Excellence for support. We also thank Ms. Anna Tchernatynskaia for performing the HPLC analysis of nucleotides and Dr. Sabine Waigel for assistance in microarray data analysis.

References

  1. Aledo J.C., Gomez-Fabre P.M., Olalla L., Marquez J. (2000). Mammalian Genome. 11:1107–1110CrossRefPubMedGoogle Scholar
  2. Arner E.S.J., Holmgren A. (2000). European Journal of Biochemistry 267:6102–6109CrossRefPubMedGoogle Scholar
  3. Bandura L., Drukala J., Wolnicka-Glubisz A., Bjornstedt M., Korohoda W. (2005). Biochemistry and cell biology. 83:196–211CrossRefPubMedGoogle Scholar
  4. Becker K., Gromer S., Schirmer R.H., Mueller S. (2000). Eur. J. Biochem. 267:6118–6125CrossRefPubMedGoogle Scholar
  5. Bonneau M.J., Poulin R. (2000). Experimental Cell Research. 259:23–34CrossRefPubMedGoogle Scholar
  6. Brindle K.M., Radda G.K. (1987). Biochimica et biophysica acta. 928:45–55CrossRefPubMedGoogle Scholar
  7. Carling D., Zammit V.A., Hardie D.G. (1987). Febs Letters 223: 217–222CrossRefPubMedGoogle Scholar
  8. Clark L.C., Dalkin B., Krongrad A., Combs G.F. Jr., Turnbull B.W., Slate E.H., Witherington R., Herlong J.H., Janosko E., Carpenter D., Borosso C., Falk S., Rounder J. (1998). British Journal of Urology. 81:730–734PubMedGoogle Scholar
  9. Fan T. W.-M. (1996) Progress in Nuclear Magnetic Resonance Spectroscopy 28:161–219Google Scholar
  10. Fan, T. W.-M. (1996) in Shachar-Hill, Y. and Pfeffer, P. E. (Eds), Nuclear Magnetic Resonance in plant biology, Vol. 16. American Society of Plant Physiologists, Rockville, Maryland, pp. 181–254.Google Scholar
  11. Fan T.W.M., Higashi R.M., Lane A.N. (1992). Biochimica et Biophysica Acta 1135:44–49CrossRefPubMedGoogle Scholar
  12. Fan T.W.M., Colmer T.D., Lane A.N., Higashi R.M. (1993). Analytical Biochemistry. 214:260–271CrossRefPubMedGoogle Scholar
  13. Fan T.W.M., Higashi R.M., Frenkiel T.A., Lane A.N. (1997) Journal of Experimental Botany 48:1655–1666CrossRefGoogle Scholar
  14. Fan T.W.M., Lane A.N., Higashi R.M. (2003). Russian Journal of Plant Physiology. 50:787–793CrossRefGoogle Scholar
  15. Fan T.W.-M., Lane A.N., Higashi R.M. (2004). asdasd. Current Opnion in Molecular Therapeutics 6:584–592PubMedGoogle Scholar
  16. Farber S.A., Slack B.E., Blusztajn J.K. (2000). FASEB J. 14: 2198–2206CrossRefPubMedGoogle Scholar
  17. Gadian D.G. (1995). NMR and its applications to living systems. Oxford University Press, Oxford U.K.Google Scholar
  18. Ganther H.E. (1999). Carcinogenesis (Oxford) 20:1657–1666CrossRefGoogle Scholar
  19. Gradwell M.J., Fan T.W.M., Lane A.N. (1998). Analytical Biochemistry 263:139–149CrossRefPubMedGoogle Scholar
  20. Heijne W.H.M., Lamers R., van Bladeren P.J., Groten J.P., van Nesselrooij J.H.J., van Ommen B. (2005). Toxicologic Pathology. 33:425–433PubMedGoogle Scholar
  21. Hirai M.Y., Yano M., Goodenowe D.B., Kanaya S., Kimura T., Awazuhara M., Arita M., Fujiwara T., Saito K. (2004). PNAS. 101:10205–10210CrossRefPubMedGoogle Scholar
  22. Huang L.E., Arany Z., Livingston D.M., Bunn H.F. (1996). J. Biol. Chem. 271:32253–32259CrossRefPubMedGoogle Scholar
  23. Ip C., Thompson H.J., Zhu Z., Ganther H.E. (2000). Cancer Research. 60:2882–2886PubMedGoogle Scholar
  24. Lee W.-N.P., Boros L.G., Puigjaner J., Bassilian S., Lim S. Cascante, M. (1998). Am J Physiol Endocrinol Metab. 274:E843–851Google Scholar
  25. Lindsley J.E., Rutter J. (2004). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology. 139:543–559CrossRefGoogle Scholar
  26. Lu D., Mulder H., Zhao P., Burgess S.C., Jensen M.V., Kamzolova S., Newgard C.B., Sherry A.D. (2002). Proceedings of the National Academy of Sciences of the United States of America 99:2708–2713CrossRefPubMedGoogle Scholar
  27. Merrill G.F., Dowell P., Pearson G.D. (1999). Cancer Research 59:3175–3179PubMedGoogle Scholar
  28. Mustacich D., Powis G. (2000). Biochemical Journal. 346:1–8CrossRefPubMedGoogle Scholar
  29. Persson, L., Dartsch, C., Wallstrom, E. L. and Svensson, F. (1999) in Bardocz, S. and White, C. (Eds), Polyamines in Health and Nutrition, Kluwer Academic Publishers, Boston, pp. 27–34.Google Scholar
  30. Sanjuan M.A., Jones D.R., Izquierdo M., Merida I. (2001). J. Cell Biol. 153:207–220CrossRefPubMedGoogle Scholar
  31. Sasada T., Nakamura H., Ueda S., Sato N., Kitaoka Y., Gon Y., Takabayashi A., Spyrou G., Holmgren A., Yodoi J. (1999). Free Radical Biology & Medicine. 27:504–514CrossRefPubMedGoogle Scholar
  32. Schenk H., Klein M., Erdbrugger W., Droge W., Schulze-Osthoff K. (1994). PNAS. 91:1672–1676PubMedGoogle Scholar
  33. Schrauzer G.N. (2002). Journal of Nutrition 132:1653–1656Google Scholar
  34. Stadtman, T. C. (2000) in Reactive Oxygen Species: From Radiation to Molecular Biology, Vol. 899. New york Acad sciences, New York, pp. 399–402.Google Scholar
  35. Tanaka T., Kohno H., Murakami M., Kagami S., El-Bayoumy K. (2000). Cancer Research. 60:3713–3716PubMedGoogle Scholar
  36. Vasta V., Meacci E., Farnararo M., Bruni P. (1995). Biochimica Et Biophysica Acta-General Subjects. 1243:43–48CrossRefGoogle Scholar
  37. Verhoeckx K.C.M., Bijlsma S., Jespersen S., Ramaker R., Verheij E. R., Witkamp R.F., van der Greef J., Rodenburg R.J.T. (2004). International Immunopharmacology. 4:1499–1514CrossRefPubMedGoogle Scholar
  38. Yan L., Yee J.A., McGuire M.H., Graef, G.L. (1997) . Nutrition & Cancer-An International Journal. 28:165–169PubMedGoogle Scholar
  39. Yan L., Yee J.A., Li D.H., McGuire M.H., Graef G.L. (1999). Anticancer Research. 19:1337–1342PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Teresa W. M. Fan
    • 1
    • 2
    Email author
  • Laura L. Bandura
    • 1
  • Richard M. Higashi
    • 3
  • Andrew N. Lane
    • 2
  1. 1.Department of ChemistryUniversity of LouisvilleLouisvilleUSA
  2. 2.J.G. Brown Cancer CenterUniversity of LouisvilleLouisvilleUSA
  3. 3.John Muir Institute for the Environment, Center for Health and EnvironmentUniversity of CaliforniaDavisUSA

Personalised recommendations