Skip to main content

Advertisement

Log in

1H-NMR metabonomics analysis of sera differentiates between mammary tumor-bearing mice and healthy controls

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples obtained from the following: 10 mice inoculated with a highly-metastatic mammary carcinoma cell line, 10 mice inoculated with a “normally” metastatic mammary carcinoma cell line, and 10 healthy controls. Following standard spectral processing and subsequent data reduction, we applied unsupervised Principal Component Analysis (PCA) to determine if unique metabolic fingerprints for different categories of metastatic breast cancer in serum exist. The PCA method correctly separated sera of tumor-bearing mice from that of normal healthy controls, as shown using the scores plot which indicated that sera classes from tumor-bearing mice did not share multivariate space with that from healthy controls. In addition, this technique was capable of distinguishing between classes of varying metastatic ability in this system. Metabolites apparently responsible for separation between diseased and healthy mice include lactate, taurine, choline, and sugar moieties. Results of this study suggest that 1H-NMR spectra of mouse serum analyzed using PCA statistical methods indicate separation of tumor-bearing mice from healthy normal controls, justifying further study of the use of 1H-NMR metabonomics for cancer detection using serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Abbreviations

BC:

breast cancer

NMR:

nuclear magnetic resonance

PCHo:

phosphocholine

GPC:

glycerophosphocholine

PE:

phosphoethanolamine

SOM:

self-organizing map

CHD:

coronary heart disease

EOC:

epithelial ovarian cancer

TMSP:

trimethylsilyl-2,2,3,3-tetradeuteropropionic acid

WATERGATE:

WATER suppression by GrAdient Tailored Excitation

FID:

free induction decay

ppm:

parts per million

PCA:

principal component analysis

HDL:

high density lipoprotein

LDL:

low density lipoprotein

lac:

lactate

tCho:

total choline

References

  • Beckonert O., Monnerjahn J., Bonk U. and Leibfritz D. (2003) Visualizing metabolic changes in breast-cancer tissue using 1H-NMR spectroscopy and self-organizing maps. NMR Biomed. 16, 1–11

    Article  PubMed  CAS  Google Scholar 

  • Brindle J.T., Antti H., Holmes E., Tranter G., Nicholson J.K., Bethell H.W.L., Clarke S., Schofield P.M., McKilligin E., Mosedale D.E. and Grainger D.J. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8, 1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Brindle J.T., Nicholson J.K., Schofield P.M., Grainger D.J. and Holmes E. (2003) Application of chemometrics to 1H NMR spectroscopic data to investigate a relationship between human serum metabolic profiles and hypertension. Analyst 128, 32–36

    Article  PubMed  CAS  Google Scholar 

  • Carlier P.G., Vaesen F., Gilles R.G., Fradin E.A. and Rorive G.L. (1991) Effect of oral contraception on water-suppressed proton NMR spectra of plasma. Magn. Reson. Med. 17, 269–273

    Article  PubMed  CAS  Google Scholar 

  • Chmurny G.N., Hilton B.D., Halverson D., McGregor G.N., Klose J., Issaq H.J., Muschik G.M., Urba W.J., Mellini M.L., Costello R., Papadopoulos N.M., Caporaso N., et al. (1988) An NMR blood test for cancer: a critical assessment. NMR Biomed. 1, 136–150

    Article  PubMed  CAS  Google Scholar 

  • de Graaf R.A., Behar K.L. (2003) Quantitative 1H NMR Spectroscopy of Blood Plasma Metabolites. Anal. Chem. 75, 2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Eriksson L., Johansson E., Kettaneh-Wold N. and Wold S. (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS). Umetrics, Umea, Sweden

    Google Scholar 

  • Fossel E.T., Carr J.M. and McDonagh J. (1986) Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma. N. Engl. J. Med. 315, 1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Gadenholt G., Kruse S., Halsteinslid L., Sletten, E. (1990) Proton nuclear magnetic resonance spectroscopy of serum lipoproteins in rabbits with implanted VX-2 carcinoma. Eur. J. Cancer 26, 611–615

    Article  Google Scholar 

  • Goldsmith M.F. (1999) Leading sites of new cancer cases and deaths – 1999 estimates [letter]. JAMA 281, 405

    Article  Google Scholar 

  • Greenlee R.T., Murray T., Bolden S. and Wingo P.A. (2000) Cancer statistics, 2000. CA Cancer J. Clin. 50, 7–33

    PubMed  CAS  Google Scholar 

  • Gribbestad I.S., Sitter B., Lundgren S., Krane J. and Axelson D. (1993) Metabolite Composition in Breast Tumors Examined by Proton Nuclear Magnetic Resonance Spectroscopy. Anticancer Res. 19, 1737–1746

    Google Scholar 

  • Hiraide H., Okamura S., Hiyashi T., Nishida M., Tamaki K. and Tamakuma S. (1994) The Urinary Excretion of Pyridinium Cross-links as Markers of Bone Metastasis in Breast Cancer. Breast Cancer 1, 103–108

    PubMed  Google Scholar 

  • Holmes E. and Antti H. (2002) Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterizing and interpreting complex biological NMR spectra. Analyst 127, 1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Holmes K.T., MacKinnon W.B., May G.L., Wright L.C., Dyne M., Tattersall M.H., Mountford C.E. and Sullivan D. (1988) Hyperlipidemia as a biochemical basis of magnetic resonance plasma test for cancer. NMR Biomed. 1, 44–49

    Article  PubMed  CAS  Google Scholar 

  • Holmes E., Nicholls A.W., Lindon J.C., Ramos S., Spraul M., Neidig P., Connor S.C., Connelly J., Damment S.J., Haselden J. and Nicholson J.K. (1998) Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR Biomed. 11, 235–244

    Article  PubMed  CAS  Google Scholar 

  • Holmes E., Nicholls A.W., Lindon J.C., Connor S.C., Connelly J.C., Haselden J.N., Damment S.J., Spraul M., Neidig P. and Nicholson J.K. (2000) Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem. Res. Toxicol. 13, 471–478

    Article  PubMed  CAS  Google Scholar 

  • Lasker S.E., Iatropoulos M.J., Hecht S.S., Misra B., Amin S., Zang E. and Williams G.M. (1992) N-ethyl-N-nitrosourea induced brain tumors in rats monitored by nuclear magnetic resonance imaging, plasma protein nuclear magnetic resonance spectroscopy and microscopy. Cancer Lett. 67, 125–131

    Article  PubMed  CAS  Google Scholar 

  • Leray G. and de Certaines J.D. (1994) Proton NMR spectroscopy of plasma lipoproteins: a marker of the immune function in cancer disease? Anticancer Res. 14, 1839–1851

    PubMed  CAS  Google Scholar 

  • Lindon J.C., Nicholson J.K. and Everett J.R. (1999) NMR spectroscopy of biofluids. Annu. Rep. NMR Spectrosc. 38, 1–88

    CAS  Google Scholar 

  • Lindon J.C., Nicholson J.K., Holmes E. and Everett J.R. (2000) Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn. Reson. 12, 289–320

    Article  CAS  Google Scholar 

  • Monzavi-Karbassi, B., Whitehead, T.L., Jousheghany, F. et al. (2005). Deficiency in Sialyl Lewis X Oligosaccharides promote metastasis in a mouse model of breast cancer. Int. J. Cancer 117, 398–408

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Wilson I.D. (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. NMR Spectroscop. 21, 444–501

    Google Scholar 

  • Nicholson J.K., Foxall P.J.D., Spraul M., Farrant R.D. and Lindon J.C. (1995) 750 MHz 1H and 1H−13C NMR Spectroscopy of Human Blood Plasma. Anal. Chem. 67, 793–811

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Lindon J.C. and Holmes E. (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29, 1181–1189

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Connelly J., Lindon J.C. and Holmes E. (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161

    Article  PubMed  CAS  Google Scholar 

  • Odunsi K., Wollman R.M., Ambrosone C.B., Hutson A., McCann S.E., Tammela J., Geisler J.P., Miller G., Sellers T., Cliby W., Qian F., Keitz B., Intengan M., Lele S. and Alderfer J.L. (2005) Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int. J. Cancer 113, 782–788

    Article  PubMed  CAS  Google Scholar 

  • Okunieff P., Zietman A., Kahn J., Singer S., Neuringer L.J., Levine R.A., Evans F.E. (1990) Lack of efficacy of water-suppressed proton nuclear magnetic resonance spectroscopy of plasma for the detection of malignant tumors. N. Engl. J. Med. 322, 953–958

    Article  PubMed  CAS  Google Scholar 

  • Pawlik T.M., Fritsche H., Coombes K.R., Xiao L, Krishnamurthy S., Hunt K.K., Pusztai L., Chen J.N., Clarke C.H., Arun B., Hung M.C. and Kuerer H.M. (2005) Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res. Treat. 89, 149–157

    Article  PubMed  CAS  Google Scholar 

  • Piotto M., Saudek V. and Sklenar V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665

    Article  PubMed  CAS  Google Scholar 

  • Schalk K.P., Ruterjans H., Kaltwasser J.P., Said-l-Hadj H. and Staffenberger L. (1989) Tumor detection in serum by NMR spectrometry. A critical evaluation of the so-called Fossel test. Onkologie 12, 5–8

    Article  PubMed  Google Scholar 

  • Tang H., Wang Y., Nicholson J.K. and Lindon J.C. (2004) Use of relaxation-edited one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma. Anal. Biochem. 325, 260–272

    Article  PubMed  CAS  Google Scholar 

  • Verdery R.B., Benham D.F., McLennan I., Busby M.J., Wehrle J.E. and Glickson J.D. (1989) Proton nuclear magnetic resonance methyl and methylene linewidths from plasma decrease during postprandial lipemia. Biochim. Biophys. Acta 1006, 287–290

    PubMed  CAS  Google Scholar 

  • Whitehead T.L., Monzavi-Karbassi B., Jousheghany F., Artaud C., Elbein A., Kieber-Emmons T. (2005) 1H-NMR metabolic markers of malignancy correlate with spontaneous metastases in a murine mammary tumor model, Int. J. Oncol. 27, 257–264

    PubMed  CAS  Google Scholar 

  • Wold S., Antti H., Lindgren F. and Ohman J. (1998) Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44, 175–185

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an American Cancer Society Institutional Research Grant (271/G1–11262–01E) (TLW), by CA089480 from NIH (TKE) and Department of Defense Breast Cancer Initiative-DAMD17–01–1-0366 (TKE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy L. Whitehead.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitehead, T.L., Monzavi-Karbassi, B. & Kieber-Emmons, T. 1H-NMR metabonomics analysis of sera differentiates between mammary tumor-bearing mice and healthy controls. Metabolomics 1, 269–278 (2005). https://doi.org/10.1007/s11306-005-0006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-005-0006-y

Keywords

Navigation