Skip to main content

Advertisement

Log in

Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities

  • Published:
Metabolomics Aims and scope Submit manuscript

Increased atmospheric deposition of nitrogen (N) over the last 50 years is known to have led to deleterious effects on the health of Calluna vulgaris heathland, with increased proliferation of grasses and loss of species diversity. However, currently it is difficult to attribute damage specifically to N deposition rather than other drivers of change such as inappropriate management. Metabolic fingerprinting using FT-IR offers a rapid, cost-effective and “holistic” means for quantifying foliar biochemistry responses specifically to N deposition. To test the potential of this approach we used a long term lowland heath N addition study in Chesire, England. FT-IR spectra of treated C. vulgaris shoot material showed that responses were detectable above 20 kg N ha−1 year−1. Differentiation was also evident in C. vulgaris metabolic fingerprints due to additional watering. We have shown that FT-IR is able to identify biochemical variations in C. vulgaris related to increases in received N and water. This technique therefore provides a sensitive measure of biochemical change in response to N addition, and allows development towards predictive modelling of N deposition at the landscape level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Barker C.G., Power S.A., Bell J.N.B., Orme C.D.L. (2004) Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biol.Conserv. 120:41–52

    Article  Google Scholar 

  • Bobbink R. (1998) Impacts of tropospheric ozone and airborne nitrogenous pollutants on natural and semi-natural ecosystems: a commentary. New Phytol. 139:161–168

    Article  CAS  Google Scholar 

  • Bobbink, R., Hornung, M. and Roelofs, J.G.M. (1996). Empirical nitrogen critical loads for natural and semi-natural ecosystems in Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded, UN ECE Convention on long-range transboundary air pollution. Federal Environmental Agency, Berlin

  • Bouffard S.P., Katon J.E., Sommer A.J., Danielson N.D. (1994) Development of microchannel thin-layer chromatography with infrared microspectroscopic detection. Anal. Chem. 66:1937–1940

    Article  CAS  Google Scholar 

  • Caporn S.J.M., Risager M., Lee J.A. (1994) Effect of nitrogen supply on frost hardiness in Calluna vulgaris (L.) Hull. New Phytol. 128:461–468

    Article  Google Scholar 

  • Carroll J.A., Caporn S.J.M., Cawley L. Read D.J., Lee J.A. (1999) The effect of increased deposition of atmospheric nitrogen on Calluna vulgaris in upland Britain. New Phytol. 141:423–431

    Article  Google Scholar 

  • Cawley, L.R. (2000) Pollutant N and drought tolerance in heathland plants. Ph.D. thesis, Manchester Metropolitan University

  • Ellis D.I., Harrigan G.G., Goodacre R. (2003) Metabolic fingerprinting with Fourier transform infrared spectroscopy. In: Harrigan G.G., Goodacre R. (eds), Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic Publishers, Dordrecht The Netherlands, pp 111–124

    Google Scholar 

  • Fiehn O. (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp. Funct. Genom. 2:155–168

    Article  CAS  Google Scholar 

  • Fowler D., Cape J.N., Deans J.D., Leith I.D., Murray M.B., Smith R.I., Sheppard L.J., Unsworth M.H. (1989) Effects of acid mist on the frost hardiness of red spruce seedlings. New Phytol. 113:321–335

    Article  CAS  Google Scholar 

  • Gidman E., Goodacre R., Emmett B., Smith A.R., Gwynn-Jones D. (2003) Investigating plant-plant interference by metabolic fingerprinting. Phytochemistry 63:705–710

    Article  PubMed  CAS  Google Scholar 

  • Gidman E., Goodacre R., Emmett B., Sheppard L.J., Leith I.D., Gwynn-Jones D. (2004) Applying metabolic fingerprinting to ecology: the use of Fourier-transform infrared spectroscopy for the rapid screening of plant responses to N deposition. Water Air Soil Poll. : Focus 4:251–258

    Article  CAS  Google Scholar 

  • Goodacre R., Timmins É.M., Burton R., Kaderbhai N., Woodward A.M., Kell D.B., Rooney P.J. (1998). Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157–1170

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R. Vaidyanathan S., Dunn W.B., Harrigan G.G., Kell D.B. (2004) Metabolomics by numbers - acquiring and understanding global metabolite data. Trends in Biotechnol. 22:245–252

    Article  PubMed  CAS  Google Scholar 

  • Heil, G.W. and Diemont, W.H. (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53, 113–120

    Article  Google Scholar 

  • Hicks W.K., Leith I.D., Woodin S.J., Fowler D. (2000) Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys. Environ. Pollut. 107:367–376

    Article  PubMed  CAS  Google Scholar 

  • Huhn G., Schulz H. (1996) Contents of free amino acids in Scots pine needles from field sites with different levels of nitrogen deposition. New Phytol. 134:95–101

    Article  CAS  Google Scholar 

  • Johnson H.E., Broadhurst D., Goodacre R., Smith A.R. (2003) Metabolic fingerprinting of salt-stressed tomatoes. Phytochemisytry 62:919–928

    Article  PubMed  CAS  Google Scholar 

  • Kell D.B., Oliver S.G. (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post genomic era. Bioessays 26:99–105

    Article  PubMed  Google Scholar 

  • Løkke, H., Bak, J., Bobbink, R., et al. (2000) Critical Loads Copenhagen 1999. 21st–25th November 1999. Conference report prepared by members of the conference’s secretariat, the scientific committee and chairmen and rapporteurs of its workshops in consulatation with the UN/ECE secretariat. Critical Loads. National Environment Research Institute, Denmark 2000)

  • Nilsson J. and Grennfelt, P. (Eds). (1998) Critical loads for Sulphur and Nitrogen. Report of the Skokloster workshop. Miljörapport 15. Nordic Council of Ministers, Copenhagen

  • Pietila M., Lahdesmaki P., Pietilainen P., Ferm A., Hytonen J., Patila A. (1991) High nitrogen deposition causes changes in amino-acid-concentrations and protein spectra in needles of the Scots pine (Pinus-sylvestris). Environ. Pollut. 72:103–115

    Article  PubMed  CAS  Google Scholar 

  • Pitcairn C.E.R., Fowler D. (1995) Deposition of fixed atmospheric nitrogen and foliar nitrogen content of bryophytes and Calluna vulgaris (L.) Hull. Environ. Pollut. 88:193–205

    Article  PubMed  CAS  Google Scholar 

  • Pitcairn C.E.R., Fowler D., Leith I.D., Sheppard L.J., Sutton M.A., Kennedy V., Okello E. (2003) Bioindicators of enhanced nitrogen deposition. Environ. Pollut. 126:353–361

    Article  PubMed  CAS  Google Scholar 

  • Pitcairn C.E.R., Leith I.D., Sheppard L.J., Sutton M.A., Fowler D., Munro R.C., Tang S., Wilson D. (1998) The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environ. Pollut. 102(S1):41–48

    Article  CAS  Google Scholar 

  • Power S.A., Ashmore M.R., Cousins D.A. (1998) Impacts and fate of experimentally enhanced nitrogen deposition on a British lowland heath. Environ. Pollut. 102:27–34

    Article  CAS  Google Scholar 

  • Radovic B.S., Goodacre R., Anklam E. (2001) Contribution of pyrolysis mass spectrometry (Py-MS) to authenticity testing of honey. J. Appl. Pyrol. 60:79–87

    Article  CAS  Google Scholar 

  • Schmitt J., Flemming H.C. (1998) FT-IR-spectroscopy in microbial and material analysis. Int. Biodeter. Biodegr. 41(1):1–11

    Article  CAS  Google Scholar 

  • Skeffington R.A. (1999) The use of critical loads in environmental policy making: A critical appraisal. Environ. Sci. Technol. 33:245–252

    CAS  Google Scholar 

  • Soares A., Pearson J. (1997) Short-term physiological responses of mosses to atmospheric ammonia and nitrate. Water Air Soil Poll. 93:225–242

    CAS  Google Scholar 

  • Sokal R.R., Rohlf F.J. (1969) Biometry. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Stevens C.J., Dise N.B., Mountford J.O., Gowing D.J. (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D., Swackhamer D. (2001) Forcasting agriculturally driven global environmental change. Science 292:281–284

    Article  PubMed  CAS  Google Scholar 

  • Timmins É.M., Howell S.A., Alsberg B.K., Noble W.C., Goodacre R. (1998) Rapid differentiation of closely related Candida species and strains by Pyrolysis-mass spectroscopy and Fourier transform-Infrared spectroscopy. J. Clin. Microbiol. 36 367–374

    PubMed  CAS  Google Scholar 

  • Vitousek P.M. (1994) Beyond global warming: Ecology and global change. Ecology 75:1861–1876

    Article  Google Scholar 

  • Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. (1997) Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7:737–750

    Google Scholar 

  • Wilson, D.B. (2003) Effect of nitrogen enrichment on the ecology and nutrient cycling of a lowland heathland. Ph.D. thesis, Manchester Metropolitan University

Download references

Acknowledgments

Roy Goodacre thanks BBSRC for financial support. Eleanor A. Gidman thanks NERC for funding a Ph.D. studentship and David Causton for invaluable advice on statistical matters. Deirdre B. Wilson thanks Chesire County Council for use of the field site at Little Budworth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dylan Gwynn-Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gidman, E.A., Goodacre, R., Emmett, B. et al. Metabolic fingerprinting for bio-indication of nitrogen responses in Calluna vulgaris heath communities. Metabolomics 1, 279–285 (2005). https://doi.org/10.1007/s11306-005-0004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-005-0004-0

Keywords:

Navigation