Skip to main content

Advertisement

Log in

Cutaneous melanoma and purinergic modulation by phenolic compounds

  • Review
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Cutaneous melanoma is a complex pathology that still has only treatments that lack efficiency and offer many adverse effects. Due to this scenario emerges the need to analyze other possible treatments against this disease, such as the effect of phenolic compounds. These substances have proven antitumor effects, but still have not been fully explored as a form of therapy to combat melanoma. Also, the purinergic receptors, along with its system molecules, take part in the formation of tumors from many pathways, such as the actions of ectoenzymes and receptors activity, especially P2Rs family, and are formed by structures that can be modulated by the phenolic compounds. Therefore, more studies have to be made with the aim of explaining the purinergic system activity in carcinogenesis of cutaneous melanoma and the effects of its modulation by phenolic compound, in order to enable the development of new therapies to combat this aggressive and feared cancer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Ado :

Adenosine

ADP :

Adenosine diphosphate

AMP :

Adenosine monophosphate

ATP :

Adenosine triphosphate

Ang-2 :

Angiopoietin-2

CA :

Caffeic acid

CM :

Cutaneous melanoma

COX-2 :

Cyclooxygenase 2

Enos :

Endothelial nitric oxide synthase

EMT :

Epithelial-mesenchymal transition

bFGF :

Fibroblastic growth factor

HB-EGF :

Heparin-binding EGF-like growth factor

HBV :

Hepatitis B virus

HBx :

Hepatitis B x protein

HIF :

Hypoxia induction factor

ELISA :

Immunoenzymatic assay

IME :

Inflammatory microenvironment

IFN :

Interferon

IL :

Interleukin

M-CSF :

Macrophage colony-stimulating factor

MDI :

Macrophage colony-stimulating factor, dexamethasone, and IL-4

mRNA :

Messenger RNA

miRNAs :

MicroRNAs

MEK :

Mitogen-Activated Protein Kinase

BRAF :

Murine Viral Sarcoma

NK :

Natural killer

NRas :

Neuroblastoma Viral Oncogene

PDGF :

Platelet-derived growth factor

P2R :

P2 receptors

P2XR :

P2X receptors

P2X7R :

P2X7 receptor

P2YR :

P2Y receptors

P2Y11R :

P2Y11 receptor

P2Y12R :

P2Y12 receptor

ROS :

Reactive oxygen species

RTK :

Receptor tyrosine kinase

RA :

Rosmarinic acid

Th17 :

T helper lymphocytes type 17

Treg :

T regulator lymphocytes

TGF :

Transforming growth factor

TILs :

Tumor infiltrating in T cells

TME :

Tumor microenvironment

TNF :

Tumor necrosis factor

UDP :

Uridine diphosphate

UTP :

Uridine triphosphate

UV :

Ultraviolet

VEGF :

Vascular endothelial growth factor

References

  1. Lopes A, Chammas R, Iyeyasu H (2013) Oncologia para a graduação. Lemar, São Paulo

  2. Leonardi G, Falzone L, Salemi R, Zangh� A, Spandidos D, Mccubrey J, et al. Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol 2018. https://doi.org/10.3892/ijo.2018.4287

  3. Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N et al (2022) European consensus-based interdisciplinary guideline for melanoma. Part 1: diagnostics: Update 2022. Eur J Cancer 170:236–55. https://doi.org/10.1016/j.ejca.2022.03.008

    Article  PubMed  Google Scholar 

  4. da Silva GB, Yamauchi MA, Zanini D, Bagatini MD (2022) Novel possibility for cutaneous melanoma treatment by means of rosmarinic acid action on purinergic signaling. Purinergic Signal 18:61–81. https://doi.org/10.1007/s11302-021-09821-7

    Article  CAS  PubMed  Google Scholar 

  5. Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J (2023) Spice-derived phenolic compounds: potential for skin cancer prevention and therapy. Molecules 28:6251. https://doi.org/10.3390/molecules28176251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murai T, Matsuda S (2023) The chemopreventive effects of chlorogenic acids, phenolic compounds in coffee, against inflammation, cancer, and neurological diseases. Molecules 28:2381. https://doi.org/10.3390/molecules28052381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mahmoud MA, Okda TM, Omran GA, Abd-Alhaseeb MM (2021) Rosmarinic acid suppresses inflammation, angiogenesis, and improves paclitaxel induced apoptosis in a breast cancer model via NF3 κB-p53-caspase-3 pathways modulation. J Appl Biomed 19:202–9. https://doi.org/10.32725/jab.2021.024

    Article  PubMed  Google Scholar 

  8. Messeha SS, Zarmouh NO, Asiri A, Soliman KFA (2020) Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur J Pharmacol 885:173419. https://doi.org/10.1016/j.ejphar.2020.173419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abdelwahab T, Abdelhamed R, Ali E, Mansour N, Abdalla M (2021) Evaluation of silver nanoparticles caffeic acid complex compound as new potential therapeutic agent against cancer incidence in mice. Asian Pacific J Cancer Prev 22:3189–201. https://doi.org/10.31557/APJCP.2021.22.10.3189

    Article  CAS  Google Scholar 

  10. Tseng J-C, Wang B-J, Wang Y-P, Kuo Y-Y, Chen J-K, Hour T-C et al (2023) Caffeic acid phenethyl ester suppresses EGFR/FAK/Akt signaling, migration, and tumor growth of prostate cancer cells. Phytomedicine 116:154860. https://doi.org/10.1016/j.phymed.2023.154860

    Article  CAS  PubMed  Google Scholar 

  11. Chen C, Kuo Y-H, Lin C-C, Chao C-Y, Pai M-H, Chiang EPI et al (2020) Decyl caffeic acid inhibits the proliferation of colorectal cancer cells in an autophagy-dependent manner in vitro and in vivo. PLoS One 15:e0232832. https://doi.org/10.1371/journal.pone.0232832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caetano AR, Oliveira RD, Celeiro SP, Freitas AS, Cardoso SM, Gonçalves MST et al (2023) Phenolic compounds contribution to portuguese propolis anti-melanoma activity. Molecules 28:3107. https://doi.org/10.3390/molecules28073107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kichina JV, Maslov A, Kandel ES (2023) PAK1 and therapy resistance in melanoma. Cells 12:2373. https://doi.org/10.3390/cells12192373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, et al. ATP and cancer immunosurveillance. EMBO J 2021;40. https://doi.org/10.15252/embj.2021108130.

  15. Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F (2022) Signalling by extracellular nucleotides in health and disease. Biochimica et Biophysica Acta (BBA) Mol Cell Res 1869:119237. https://doi.org/10.1016/j.bbamcr.2022.119237

    Article  CAS  Google Scholar 

  16. Savio LEB, Leite-Aguiar R, Alves VS, Coutinho-Silva R, Wyse ATS (2021) Purinergic signaling in the modulation of redox biology. Redox Biol 47:102137. https://doi.org/10.1016/j.redox.2021.102137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura H, Takada K (2021) Reactive oxygen species in cancer: current findings and future directions. Cancer Sci 112:3945–3952. https://doi.org/10.1111/cas.15068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. da Silva JLG, Viana AR, Passos DF, Krause LMF, Miron VV, Schetinger MRC et al (2023) Istradefylline modulates purinergic enzymes and reduces malignancy-associated factors in B16F10 melanoma cells. Purinergic Signal 19:633–650. https://doi.org/10.1007/s11302-022-09909-8

    Article  CAS  PubMed  Google Scholar 

  19. Ijaz S, Iqbal J, Abbasi BA, Ullah Z, Yaseen T, Kanwal S et al (2023) Rosmarinic acid and its derivatives: current insights on anticancer potential and other biomedical applications. Biomed Pharmacother 162:114687. https://doi.org/10.1016/j.biopha.2023.114687

    Article  CAS  PubMed  Google Scholar 

  20. Azhar MDK, Anwar S, Hasan GM, Shamsi A, Islam A, Parvez S et al (2023) Comprehensive insights into biological roles of rosmarinic acid: implications in diabetes, cancer and neurodegenerative diseases. Nutrients 15:4297. https://doi.org/10.3390/nu15194297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osakabe N (2003) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25:549–557. https://doi.org/10.1093/carcin/bgh034

    Article  CAS  Google Scholar 

  22. Huang L, Chen J, Quan J, Xiang D (2021) Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 12:3065–3076. https://doi.org/10.1080/21655979.2021.1941699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  24. Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A et al (2020) P2Y purinergic receptors, endothelial dysfunction, and cardiovascular diseases. Int J Mol Sci 21:6855. https://doi.org/10.3390/ijms21186855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alam M, Ahmed S, Elasbali AM, Adnan M, Alam S, Hassan MdI, et al. Therapeutic implications of caffeic acid in cancer and neurological diseases. Front Oncol 2022;12. https://doi.org/10.3389/fonc.2022.860508.

  26. Kudugunti SK, Vad NM, Whiteside AJ, Naik BU, Yusuf MohdA, Srivenugopal KS et al (2010) Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines. Chem Biol Interact 188:1–14. https://doi.org/10.1016/j.cbi.2010.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pelinson LP, Assmann CE, Palma TV, da Cruz IBM, Pillat MM, Mânica A et al (2019) Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol Biol Rep 46:2085–2092. https://doi.org/10.1007/s11033-019-04658-1

    Article  CAS  PubMed  Google Scholar 

  28. Kimsa-Dudek M, Synowiec-Wojtarowicz A, Krawczyk A, Kosowska A, Kimsa-Furdzik M, Francuz T (2022) The apoptotic effect of caffeic or chlorogenic acid on the C32 cells that have simultaneously been exposed to a static magnetic field. Int J Mol Sci 23:3859. https://doi.org/10.3390/ijms23073859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anwar J, Spanevello RM, Pimentel VC, Gutierres J, Thomé G, Cardoso A et al (2013) Caffeic acid treatment alters the extracellular adenine nucleotide hydrolysis in platelets and lymphocytes of adult rats. Food Chem Toxicol 56:459–466. https://doi.org/10.1016/j.fct.2013.02.030

    Article  CAS  PubMed  Google Scholar 

  30. Tao DL, Tassi Yunga S, Williams CD, McCarty OJT (2021) Aspirin and antiplatelet treatments in cancer. Blood 137:3201–3211. https://doi.org/10.1182/blood.2019003977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castro MFV, Stefanello N, Assmann CE, Baldissarelli J, Bagatini MD, da Silva AD et al (2021) Modulatory effects of caffeic acid on purinergic and cholinergic systems and oxi-inflammatory parameters of streptozotocin-induced diabetic rats. Life Sci 277:119421. https://doi.org/10.1016/j.lfs.2021.119421

    Article  CAS  PubMed  Google Scholar 

  32. Valdespino-Gómez VM, Valdespino-Castillo PM, Valdespino-Castillo VE (2015) Interacción de las vías de señalización intracelulares participantes en la proliferación celular: potencial blanco de intervencionismo terapéutico. Cir Cir 83:165–174. https://doi.org/10.1016/j.circir.2015.04.015

    Article  PubMed  Google Scholar 

  33. Pegoraro A, De Marchi E, Ferracin M, Orioli E, Zanoni M, Bassi C et al (2021) P2X7 promotes metastatic spreading and triggers release of miRNA-containing exosomes and microvesicles from melanoma cells. Cell Death Dis 12:1088. https://doi.org/10.1038/s41419-021-04378-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lara R, Adinolfi E, Harwood CA, Philpott M, Barden JA, Di Virgilio F, et al. P2X7 in cancer: from molecular mechanisms to therapeutics. Front Pharmacol 2020;11. https://doi.org/10.3389/fphar.2020.00793.

  35. De Marchi E, Orioli E, Pegoraro A, Sangaletti S, Portararo P, Curti A et al (2019) The P2X7 receptor modulates immune cells infiltration, ectonucleotidases expression and extracellular ATP levels in the tumor microenvironment. Oncogene 38:3636–3650. https://doi.org/10.1038/s41388-019-0684-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen L, Heikkinen L, Wang C, Yang Y, Sun H, Wong G (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20:1836–1852. https://doi.org/10.1093/bib/bby054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tucci M, Mannavola F, Passarelli A, Stucci LS, Cives M, Silvestris F (2018) Exosomes in melanoma: a role in tumor progression, metastasis and impaired immune system activity. Oncotarget 9:20826–37. https://doi.org/10.18632/oncotarget.24846

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rotondo JC, Mazziotta C, Lanzillotti C, Stefani C, Badiale G, Campione G et al (2022) The role of purinergic P2X7 receptor in inflammation and cancer: novel molecular insights and clinical applications. Cancers (Basel) 14:1116. https://doi.org/10.3390/cancers14051116

    Article  CAS  PubMed  Google Scholar 

  39. Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 2018;9. https://doi.org/10.3389/fphar.2018.00052.

  40. Romagnani A, Rottoli E, Mazza EMC, Rezzonico-Jost T, De Ponte CB, Proietti M et al (2020) P2X7 receptor activity limits accumulation of T cells within tumors. Cancer Res 80:3906–3919. https://doi.org/10.1158/0008-5472.CAN-19-3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lei C, Fan Y, Peng X, Gong X, Shao L (2019) P2Y11R regulates cytotoxicity of HBV X protein (HBx) in human normal hepatocytes. Am J Transl Res 11:2765–2774

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang C, Lei L, Collins JWM, Briones M, Ma L, Sturdevant GL et al (2021) Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor. Nat Commun 12:5454. https://doi.org/10.1038/s41467-021-25749-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Snelgrove RJ, Gregory LG, Peiró T, Akthar S, Campbell GA, Walker SA et al (2014) Alternaria-derived serine protease activity drives IL-33–mediated asthma exacerbations. J Allergy Clin Immunol 134:583-592.e6. https://doi.org/10.1016/j.jaci.2014.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quan J-H, Huang R, Wang Z, Huang S, Choi I-W, Zhou Y et al (2018) P2X7 receptor mediates NLRP3-dependent IL-1β secretion and parasite proliferation in Toxoplasma gondii-infected human small intestinal epithelial cells. Parasit Vectors 11:1. https://doi.org/10.1186/s13071-017-2573-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kloss L, Dollt C, Schledzewski K, Krewer A, Melchers S, Manta C et al (2019) ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death Dis 10:760. https://doi.org/10.1038/s41419-019-2010-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88:841–886. https://doi.org/10.1152/physrev.00035.2007

    Article  CAS  PubMed  Google Scholar 

  47. Morandi F, Morandi B, Horenstein AL, Chillemi A, Quarona V, Zaccarello G et al (2015) A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 6:25602–18. https://doi.org/10.18632/oncotarget.4693

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y et al (2018) CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov 8:1156–1175. https://doi.org/10.1158/2159-8290.CD-17-1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moesta AK, Li X-Y, Smyth MJ (2020) Targeting CD39 in cancer. Nat Rev Immunol 20:739–755. https://doi.org/10.1038/s41577-020-0376-4

    Article  CAS  PubMed  Google Scholar 

  50. Timperi E, Barnaba V (2021) CD39 regulation and functions in T cells. Int J Mol Sci 22:8068. https://doi.org/10.3390/ijms22158068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noble A, Mehta H, Lovell A, Papaioannou E, Fairbanks L (2016) IL-12 and IL-4 activate a CD39-dependent intrinsic peripheral tolerance mechanism in CD8 + T cells. Eur J Immunol 46:1438–1448. https://doi.org/10.1002/eji.201545939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bastid J, Regairaz A, Bonnefoy N, Déjou C, Giustiniani J, Laheurte C et al (2015) Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res 3:254–265. https://doi.org/10.1158/2326-6066.CIR-14-0018

    Article  CAS  PubMed  Google Scholar 

  53. Simoni Y, Becht E, Fehlings M, Loh CY, Koo S-L, Teng KWW et al (2018) Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557:575–579. https://doi.org/10.1038/s41586-018-0130-2

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Young A, Ngiow SF, Barkauskas DS, Sult E, Hay C, Blake SJ et al (2016) Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses. Cancer Cell 30:391–403. https://doi.org/10.1016/j.ccell.2016.06.025

    Article  CAS  PubMed  Google Scholar 

  55. Chen S, Akdemir I, Fan J, Linden J, Zhang B, Cekic C (2020) The expression of adenosine A2B receptor on antigen-presenting cells suppresses CD8+ T-cell responses and promotes tumor growth. Cancer Immunol Res 8:1064–1074. https://doi.org/10.1158/2326-6066.CIR-19-0833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MKK et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci 103:13132–13137. https://doi.org/10.1073/pnas.0605251103

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. JanhoDitHreich S, Benzaquen J, Hofman P, Vouret-Craviari V (2021) To inhibit or to boost the ATP/P2RX7 pathway to fight cancer—that is the question. Purinergic Signal 17:619–31. https://doi.org/10.1007/s11302-021-09811-9

    Article  CAS  Google Scholar 

  58. Gan P, Liu C, Wu H, Dong Xin-Tong, Ke J, Chen F (2021) The role of HIF-VEGF-Ang-2 signal transduction-mediated synovial angiogenesis in rheumatoid arthritis / 药学学报. Acta Pharmaceutica Sinica 12:1246–52

    Google Scholar 

  59. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563. https://doi.org/10.1016/j.cardiores.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  60. Romagnoli GG (2007) Fatores de crescimento e citocinas envolvidos na angiogênese de melanoma em animais selecionados pela intensidade da resposta inflamatória aguda. Dissertation, Universidade Estadual Paulista (UNESP)

Download references

Acknowledgements

GCB is grateful to the Federal University of Fronteira Sul for the research grant that promotes the production of this and other publications. All figures were made with Biorender.

Funding

MDB acknowledges grant support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (CNPq proj. No 404256/2021–0 and 310606/2021–7).

Author information

Authors and Affiliations

Authors

Contributions

GCB had the idea for the article. GCB, JVC, VCM, BBL, and MDB performed the literature search and data analysis, drafted, and critically revised the work.

Corresponding author

Correspondence to Margarete Dulce Bagatini.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

An informed consent and a consent to publish were obtained from each of the participants.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Cutaneous melanoma is one of the types of cancer with higher rates of migration and development, resulting in low survival rates.

• Cutaneous melanoma has only a few options of treatment, being most of them not effective enough to combat the disease and with many adverse effects.

• The purinergic system and its molecules influence in the development of cutaneous melanoma.

• Phenolic compound therapy has demonstrated effective results against carcinogenic processes in researches.

• Phenolic compounds are able to modulate purinoreceptors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho Braga, G., Coiado, J.V., de Melo, V.C. et al. Cutaneous melanoma and purinergic modulation by phenolic compounds. Purinergic Signalling (2024). https://doi.org/10.1007/s11302-024-10002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-024-10002-5

Keywords

Navigation