Skip to main content

Advertisement

Log in

Coffee, adenosine, and the liver

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

A variety of observational studies have demonstrated that coffee, likely acting through caffeine, improves health outcomes in patients with chronic liver disease. The primary pharmacologic role of caffeine is to act as an inhibitor of adenosine receptors. Because key liver cells express adenosine receptors linked to liver injury, regeneration, and fibrosis, it is plausible that the biological effects of coffee are explained by effects of caffeine on adenosinergic signaling in the liver. This review is designed to help the reader make sense of that hypothesis, highlighting key observations in the literature that support or dispute it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

N/a.

ReferencesQuery

  1. Syal G, Fausther M, Dranoff JA (2012) Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol 303:G1077-1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wells RG, Schwabe RF (2015) Origin and function of myofibroblasts in the liver. Semin Liver Dis 35:97–106

    Article  CAS  PubMed  Google Scholar 

  3. Hammerich L, and Tacke F (2023) Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 20:633–646

  4. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y (2023) The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatol 78:649–669

    Article  Google Scholar 

  6. Ma C, Brunt EM (2012) Histopathologic evaluation of liver biopsy for cirrhosis. Adv Anat Pathol 19:220–230

    Article  PubMed  Google Scholar 

  7. Friedman SL (1999) The virtuosity of hepatic stellate cells. Gastroenterol 117:1244–1246

    Article  CAS  Google Scholar 

  8. Dranoff JA, Wells RG (2010) Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatol 51:1438–1444

    Article  Google Scholar 

  9. Dranoff JA, Kruglov E, Toure J, Braun N, Zimmermann H, Jain D, Knowles AF, Sevigny J (2004) The ecto-nucleotidase NTPDase2 is selectively down-regulated in biliary fibrosis. J Invest Med 52:475–482

    Article  CAS  Google Scholar 

  10. Yu J, Lavoie EG, Sheung N, Tremblay JJ, Sevigny J, Dranoff JA (2008) IL-6 downregulates transcription of NTPDase2 via specific promoter elements. Am J Physiol Gastrointest Liver Physiol 294:G748-756

    Article  CAS  PubMed  Google Scholar 

  11. Jhandier MN, Kruglov EA, Lavoie EG, Sevigny J, Dranoff JA (2005) Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 280:22986–22992

    Article  CAS  PubMed  Google Scholar 

  12. Lavoie EG, Fausther M, Goree JR, Dranoff JA (2017) The cholangiocyte adenosine-IL-6 axis regulates survival during biliary cirrhosis. Gene Expr 17:327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hashmi AZ, Hakim W, Kruglov EA, Watanabe A, Watkins W, Dranoff JA, Mehal WZ (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G395-401

    Article  CAS  PubMed  Google Scholar 

  14. Sohail MA, Hashmi AZ, Hakim W, Watanabe A, Zipprich A, Groszmann RJ, Dranoff JA, Torok NJ, Mehal WZ (2009) Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition. Hepatol 49:185–194

    Article  CAS  Google Scholar 

  15. Ahsan MK, Mehal WZ (2014) Activation of adenosine receptor A2A increases HSC proliferation and inhibits death and senescence by down-regulation of p53 and Rb. Front Pharmacol 5:69

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan ES, Montesinos MC, Fernandez P, Desai A, Delano DL, Yee H, Reiss AB, Pillinger MH, Chen JF, Schwarzschild MA, Friedman SL, Cronstein BN (2006) Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol 148:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Guan W, Yang W, Wang Q, Zhao H, Yang F, Lv X, Li J (2014) Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway. PLoS ONE 9:e92482

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hubel E, Saroha A, Park WJ, Pewzner-Jung Y, Lavoie EG, Futerman AH, Bruck R, Fishman S, Dranoff JA, Shibolet O, Zvibel I (2017) Sortilin deficiency reduces ductular reaction, hepatocyte apoptosis, and liver fibrosis in cholestatic-induced liver injury. Am J Pathol 187:122–133

    Article  CAS  PubMed  Google Scholar 

  19. European Association for the Study of the Liver (2021) Electronic address: Clinical Practice Guideline P, Chair, representative EGB, and Panel m. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis - update. J Hepatol 75(659–689):2021

  20. Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H (2023) Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomed Pharmacother 165:114884

    Article  CAS  PubMed  Google Scholar 

  21. Kakiyama G, Minowa K, Rodriguez-Agudo D, Martin R, Takei H, Mitamura K, Ikegawa S, Suzuki M, Nittono H, Fuchs M, Heuman DM, Zhou H, Pandak WM (2022) Coffee modulates insulin-hepatocyte nuclear factor-4alpha-Cyp7b1 pathway and reduces oxysterol-driven liver toxicity in a nonalcoholic fatty liver disease mouse model. Am J Physiol Gastrointest Liver Physiol 323:G488–G500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muriel P, Lopez-Sanchez P, Ramos-Tovar E (2021) Fructose and the liver. Int J Mol Sci 22:6969

  23. Robson SC, Schuppan D (2010) Adenosine: tipping the balance towards hepatic steatosis and fibrosis. J Hepatol 52:941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, Blackburn MR, Azzena G, Resta G, Cronstein BN (2009) Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Investig 119:582–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dranoff JA (2018) Coffee consumption and prevention of cirrhosis. In Support of the caffeine hypothesis. Gene Expr 18:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dranoff JA (2023) Coffee as chemoprotectant in fatty liver disease: caffeine-dependent and caffeine-independent effects. Am J Physiol Gastrointest Liver Physiol 324:G419–G421

    Article  CAS  PubMed  Google Scholar 

  27. Dranoff JA, Feld JJ, Lavoie EG, Fausther M (2014) How does coffee prevent liver fibrosis? Biological plausibility for recent epidemiological observations. Hepatol 60:464–467

    Article  Google Scholar 

  28. Feld JJ, Lavoie EG, Fausther M, Dranoff JA (2015) I drink for my liver, Doc: emerging evidence that coffee prevents cirrhosis. F1000Res 4:95

  29. Ruhl CE, Everhart JE (2005) Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 128:24–32

    Article  CAS  PubMed  Google Scholar 

  30. Corrao G, Zambon A, Bagnardi V, D’Amicis A, Klatsky A (2001) Coffee, caffeine, and the risk of liver cirrhosis. Ann Epidemiol 11:458–465

    Article  CAS  PubMed  Google Scholar 

  31. Niezen S, Mehta M, Jiang ZG, Tapper EB (2022) Coffee consumption is associated with lower liver stiffness: a nationally representative study. Clin Gastroenterol Hepatol : Off Clin Pract J Am Gastroenterol Assoc 20(2032–2040)

  32. Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A (2021) The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann Hepatol 20:100254

    Article  CAS  PubMed  Google Scholar 

  33. Whitfield JB, Masson S, Liangpunsakul S, Mueller S, Aithal GP, Eyer F, Gleeson D, Thompson A, Stickel F, Soyka M, Muellhaupt B, Daly AK, Cordell HJ, Foroud T, Lumeng L, Pirmohamed M, Nalpas B, Jacquet JM, Moirand R, Nahon P, Naveau S, Perney P, Haber PS, Seitz HK, Day CP, Mathurin P, Morgan TR, Seth D, Genom ALCC (2021) Obesity, diabetes, coffee, tea, and cannabis use alter risk for alcohol-related cirrhosis in 2 large cohorts of high-risk drinkers. Am J Gastroenterol 116:106–115

    Article  PubMed  Google Scholar 

  34. Ebadi M, Ip S, Bhanji RA, Montano-Loza AJ (2021) Effect of coffee consumption on non-alcoholic fatty liver disease incidence, prevalence and risk of significant liver fibrosis: systematic review with meta-analysis of observational studies. Nutrients 13:3042

  35. Sewter R, Heaney S, and Patterson A (2021) Coffee consumption and the progression of NAFLD: a systematic review. Nutrients 13:2381

  36. Lammert C, Chalasani SN, Green K, Atkinson E, McCauley B, Lazaridis KN (2022) Patients with autoimmune hepatitis report lower lifetime coffee consumption. Dig Dis Sci 67:2594–2599

    Article  CAS  PubMed  Google Scholar 

  37. Lammert C, Juran BD, Schlicht E, Xie X, Atkinson EJ, de Andrade M, Lazaridis KN (2014) Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol : Off Clin pract J Am Gastroenterol Assoc 12:1562–1568

    Article  Google Scholar 

  38. Gershbein LL, Baburao K (1980) Effect of feeding coffee and its lipids on regenerating and intact liver. Res Commun Chem Pathol Pharmacol 28:457–472

    CAS  PubMed  Google Scholar 

  39. Yoon CS, Kim MK, Kim YS, Lee SK (2018) In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC. Maxillofac Plast Reconstr Surg 40:44

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M (2017) Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 313:G102–G116

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lange NF, Radu P, Dufour JF (2021) Prevention of NAFLD-associated HCC: role of lifestyle and chemoprevention. J Hepatol 75:1217–1227

    Article  CAS  PubMed  Google Scholar 

  42. Njei B, McCarty TR, Sharma P, Lange A, Najafian N, Ngu JN, Ngomba VE, Echouffo-Tcheugui JB (2018) Bariatric surgery and hepatocellular carcinoma: a propensity score-matched analysis. Obes Surg 28:3880–3889

    Article  PubMed  PubMed Central  Google Scholar 

  43. Setiawan VW, Wilkens LR, Lu SC, Hernandez BY, Le Marchand L, Henderson BE (2015) Association of coffee intake with reduced incidence of liver cancer and death from chronic liver disease in the US multiethnic cohort. Gastroenterol 148:118–125

  44. Bravi F, Bosetti C, Tavani A, Gallus S, La Vecchia C (2013) Coffee reduces risk for hepatocellular carcinoma: an updated meta-analysis. Clin Gastroenterol Hepatol: Off Clin Pract J Am Gastroenterol Assoc 11:1413–21

  45. Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PK, Ngeow J (2023) Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology 164:766–782

    Article  PubMed  Google Scholar 

  46. Di Maso M, Boffetta P, Negri E, La Vecchia C, Bravi F (2021) Caffeinated coffee consumption and health outcomes in the US population: a dose-response meta-analysis and estimation of disease cases and deaths Avoided. Adv Nutr 12:1160–1176

    Article  PubMed  PubMed Central  Google Scholar 

  47. Niemela O, Bloigu A, Bloigu R, Aalto M, Laatikainen T (2023) Associations between liver enzymes, lifestyle risk factors and pre-existing medical conditions in a population-based cross-sectional sample. J Clin Med 12:4276

  48. Yu J, Liang D, Li J, Liu Z, Zhou F, Wang T, Ma S, Wang G, Chen B, Chen W (2023) Coffee, green tea intake, and the risk of hepatocellular carcinoma: a systematic review and meta-analysis of observational studies. Nutr Cancer 75:1295–1308

    Article  PubMed  Google Scholar 

  49. Coelho M, Patarrao RS, Sousa-Lima I, Ribeiro RT, Meneses MJ, Andrade R, Mendes VM, Manadas B, Raposo JF, Macedo MP, Jones JG (2022) Increased intake of both caffeine and non-caffeine coffee components is associated with reduced NAFLD severity in subjects with type 2 diabetes. Nutrients 15:4

  50. Kim JY, Leem J, Kim GM (2022) Kahweol protects against acetaminophen-induced hepatotoxicity in mice through inhibiting oxidative stress, hepatocyte death, and inflammation. Biomed Res Int 2022:8121124

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nwafor EO, Lu P, Zhang Y, Liu R, Peng H, Xing B, Liu Y, Li Z, Zhang K, Zhang Y, Liu Z (2022) Chlorogenic acid: potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol 15:101294

    Article  CAS  PubMed  Google Scholar 

  52. Bagorda A, Guerra L, Di Sole F, Helmle-Kolb C, Favia M, Jacobson KA, Casavola V, Reshkin SJ (2002) Extracellular adenine nucleotides regulate Na+/H+ exchanger NHE3 activity in A6-NHE3 transfectants by a cAMP/PKA-dependent mechanism. J Membr Biol 188:249–259

    Article  CAS  PubMed  Google Scholar 

  53. Velazquez AM, Roglans N, Bentanachs R, Gene M, Sala-Vila A, Lazaro I, Rodriguez-Morato J, Sanchez RM, Laguna JC, Alegret M (2020) Effects of a low dose of caffeine alone or as part of a green coffee extract, in a rat dietary model of lean non-alcoholic fatty liver disease without inflammation. Nutrients 12:3240

  54. Hussain SK, Dong TS, Agopian V, Pisegna JR, Durazo FA, Enayati P, Sundaram V, Benhammou JN, Noureddin M, Choi G, Ayoub WS, Lagishetty V, Elashoff D, Goodman MT, Jacobs JP (2020) Dietary protein, fiber and coffee are associated with small intestine microbiome composition and diversity in patients with liver cirrhosis. Nutrients 12:1395

  55. Kim Y, Je Y, Giovannucci E (2019) Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol 34:731–752

    Article  PubMed  Google Scholar 

  56. Liu D, Li ZH, Shen D, Zhang PD, Song WQ, Zhang WT, Huang QM, Chen PL, Zhang XR, Mao C (2022) Association of sugar-sweetened, artificially sweetened, and unsweetened coffee consumption with all-cause and cause-specific mortality : a large prospective cohort study. Ann Intern Med 175:909–917

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N/a.

Corresponding author

Correspondence to Jonathan A. Dranoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest

None.

Ethical approval

N/a.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dranoff, J.A. Coffee, adenosine, and the liver. Purinergic Signalling 20, 21–28 (2024). https://doi.org/10.1007/s11302-023-09968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-023-09968-5

Keywords

Navigation