Skip to main content
Log in

RETRACTED ARTICLE: Lysophosphatidylcholine induces adenosine release from macrophages via TRPM7-mediated mitochondrial activation

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

This article was retracted on 12 August 2023

This article has been updated

Abstract

Even though macrophages have the potential to harm tissues through excessive release of inflammatory mediators, they play protective roles to maintain tissue integrity. In this study, we hypothesized that lysophosphatidylcholine (LPC), via G2A and A2B receptors, puts brakes on macrophages by the induction of adenosine release which could contribute to termination of inflammation. Mechanistically, LPC-induced PGE2 production followed by the activation of cAMP/protein kinase A (PKA) pathway which results in the activation of LKB1/AMPK signaling pathway leading to increasing Mg2+ influx concomitantly with an increase in mitochondrial membrane potential (MMP, Δψm) and ATP production. Then, ATP is converted to adenosine intracellularly followed by efflux via ENT1. In a parallel pathway, LPC-induced elevation of cytosolic calcium was essential for adenosine release, and Ca2+/calmodulin signaling cooperated with PKA to regulate ENT1 permeation to adenosine. Pharmacological blockade of TRPM7 and antisense treatment suppressed LPC-induced adenosine release and magnesium influx in bone marrow-derived macrophages (BMDMs). Moreover, LPC suppressed LPS-induced phosphorylation of connexin-43, which may counteract TLR4-mediated inflammatory response. Intriguingly, we found LPC increased netrin-1 production from BMDMs. Netrin-1 induces anti-inflammatory signaling via A2B receptor. In the presence of adenosine deaminase which removes adenosine in the medium, the chemotaxis of macrophages toward LPC was significantly increased. Hypoxia and metabolic acidosis are usually developed in a variety of inflammatory situations such as sepsis. We found LPC augmented hypoxia- or acidosis-induced adenosine release from BMDMs. These results provide evidence of LPC-induced brake-like action on macrophages by adenosine release via cellular magnesium signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Change history

Abbreviations

AMPK:

AMP-activated protein kinase

APCP:

Adenosine 5′-(α,β-methylene)diphosphate

BMDMs:

Bone marrow-derived macrophages

BAPTA-AM:

1,2-Bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

CaMKII:

Calcium/calmodulin-dependent kinase kinase 2

ENT1:

Equilibrative nucleoside transporter

HIF-1α:

Hypoxia-inducible factor 1α

LPC:

Lysophosphatidylcholine

LPS:

Lipopolysaccharide

LKB1:

Liver kinase B1

MMP:

Mitochondrial membrane potential

NBTI:

S-(4-nitrobenzyl)-6-thioinosine

TRPM7:

Transient receptor potential melastatin member 7

References

  1. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286. https://doi.org/10.2174/1568010054022024

    Article  CAS  PubMed  Google Scholar 

  2. Watanabe S, Alexander M, Misharin AV, Budinger GRS (2019) The role of macrophages in the resolution of inflammation. J Clin Invest 129:2619–2628. https://doi.org/10.1172/JCI124615

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kelly B, O’Neill LA (2015) Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res 25:771–784. https://doi.org/10.1038/cr.2015.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192. https://doi.org/10.1038/nri.2016.4

    Article  CAS  PubMed  Google Scholar 

  5. Leitão-Rocha A, Sousa J, Diniz C (2012) Adenosinergic system in the mesenteric vessels, the cardiovascular system - Physiology, Diagnostics and Clinical Implications, Dr. David Gaze, ed. IntechOpen, London, UK. p. 109–134.

  6. Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM Jr, Gause WC, Leibovich SJ, Hasko G (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J 26:376–386. https://doi.org/10.1096/fj.11-190934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Effendi WI, Nagano T, Kobayashi K, Nishimura Y (2020) Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells 9:785. https://doi.org/10.3390/cells9030785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 324:694–700. https://doi.org/10.1124/jpet.107.131540

    Article  CAS  PubMed  Google Scholar 

  9. Law SH, Chan ML, Marathe GK, Parveen F, Chen CH, Ke LY (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20:1149. https://doi.org/10.3390/ijms20051149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Assunção LS, Magalhães KG, Carneiro AB, Molinaro R, Almeida PE, Atella GC, Castro-Faria-Neto HC, Bozza PT (2017) Schistosomal-derived lysophosphatidylcholine triggers M2 polarization of macrophages through PPARγ dependent mechanisms. Biochim Biophys Acta Mol Cell Biol Lipids 1862:246–254. https://doi.org/10.1016/j.bbalip.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  11. Lin P, Welch EJ, Gao XP, Malik AB, Ye RD (2005) Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol 174:2981–2989. https://doi.org/10.4049/jimmunol.174.5.2981

    Article  CAS  PubMed  Google Scholar 

  12. Tounsi N, Meghari S, Moser M, Djerdjouri B (2015) Lysophosphatidylcholine exacerbates Leishmania major-dendritic cell infection through interleukin-10 and a burst in arginase1 and indoleamine 2,3-dioxygenase activities. Int Immunopharmacol 25:1–9. https://doi.org/10.1016/j.intimp.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  13. Hasegawa H, Lei J, Matsumoto T, Onishi S, Suemori K, Yasukawa M (2011) Lysophosphatidylcholine enhances the suppressive function of human naturally occurring regulatory T cells through TGF-β production. Biochem Biophys Res Commun 415:526–531. https://doi.org/10.1016/j.bbrc.2011.10.119

    Article  CAS  PubMed  Google Scholar 

  14. Yan JJ, Jung JS, Lee JE, Lee J, Huh SO, Kim HS, Jung KC, Cho JY, Nam JS, Suh HW, Kim YH, Song DK (2004) Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 10:161–167. https://doi.org/10.1038/nm989

    Article  CAS  PubMed  Google Scholar 

  15. Li HM, Jang JH, Jung JS, Shin J, Park CO, Kim YJ, Ahn WG, Nam JS, Hong CW, Lee J, Jung YJ, Chen JF, Ravid K, Lee HT, Huh WK, Kabarowski JH, Song DK (2019) G2A protects mice against sepsis by modulating Kupffer cell activation: cooperativity with adenosine receptor 2b. J Immunol 202:527–538. https://doi.org/10.4049/jimmunol.1700783

    Article  CAS  PubMed  Google Scholar 

  16. Trouplin V, Boucherit N, Gorvel L, Conti F, Mottola G, Ghigo E (2013) Bone marrow-derived macrophage production. J Vis Exp: e50966. https://doi.org/10.3791/50966

  17. Corrêa R, Silva LFF, Ribeiro DJS, Almeida RDN, Santos IO, Corrêa LH, de Sant’Ana LP, Assunção LS, Bozza PT, Magalhães KG (2019) Lysophosphatidylcholine induces NLRP3 inflammasome-mediated foam cell formation and pyroptosis in human monocytes and endothelial cells. Front Immunol 10:2927. https://doi.org/10.3389/fimmu.2019.02927

    Article  CAS  PubMed  Google Scholar 

  18. Mochizuki M, Zigler JS Jr, Russell P, Gery I (1982) Serum proteins neutralize the toxic effect of lysophosphatidylcholine. Curr Eye Res 2:621–624. https://doi.org/10.3109/02713688208996363

    Article  PubMed  Google Scholar 

  19. Kim YL, Im YJ, Ha NC, Im DS (2007) Albumin inhibits cytotoxic activity of lysophosphatidylcholine by direct binding. Prostaglandins Other Lipid Mediat 83:130–138. https://doi.org/10.1016/j.prostaglandins.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  20. Kong X, Tang X, Du W, Tong J, Yan Y, Zheng F, Fang M, Gong F, Tan Z (2013) Extracellular acidosis modulates the endocytosis and maturation of macrophages. Cell Immunol 281:44–50. https://doi.org/10.1016/j.cellimm.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  21. Cohen HB, Briggs KT, Marino JP, Ravid K, Robson SC, Mosser DM (2013) TLR stimulation initiates a CD39-based autoregulatory mechanism that limits macrophage inflammatory responses. Blood 122:1935–1945. https://doi.org/10.1182/blood-2013-04-496216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, Nedergaard M (2008) Connexin 43 hemichannels are permeable to ATP. J Neurosci 28:4702–4711. https://doi.org/10.1523/JNEUROSCI.5048-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dosch M, Zindel J, Jebbawi F, Melin N, Sanchez-Taltavull D, Stroka D, Candinas D, Beldi G (2019) Connexin-43-dependent ATP release mediates macrophage activation during sepsis. Elife 8:42670. https://doi.org/10.7554/eLife.42670

    Article  CAS  Google Scholar 

  24. Dosch M, Gerber J, Jebbawi F, Beldi G (2018) Mechanisms of ATP release by inflammatory cells. Int J Mol Sci 19:1222. https://doi.org/10.3390/ijms19041222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carneiro AB, Iaciura BM, Nohara LL, Lopes CD, Veas EM, Mariano VS, Bozza PT, Lopes UG, Atella GC, Almeida IC, Silva-Neto MA (2013) Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-κB translocation and MAPK/ERK phosphorylation. PLoS One 8:e76233. https://doi.org/10.1371/journal.pone.0076233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boswell-Casteel RC, Hays FA (2017) Equilibrative nucleoside transporters-a review. Nucleosides Nucleotides Nucleic Acids 36:7–30. https://doi.org/10.1080/15257770.2016.1210805

    Article  CAS  PubMed  Google Scholar 

  27. Vaeth M, Zee I, Concepcion AR, Maus M, Shaw P, Portal-Celhay C, Zahra A, Kozhaya L, Weidinger C, Philips J, Unutmaz D, Feske S (2015) Ca2+ signaling but not store-operated Ca2+ entry is required for the function of macrophages and dendritic cells. J Immunol 195:1202–1217. https://doi.org/10.4049/jimmunol.1403013

    Article  CAS  PubMed  Google Scholar 

  28. Tian C, Huang R, Tang F, Lin Z, Cheng N, Han X, Li S, Zhou P, Deng S, Huang H, Zhao H, Xu J, Li Z (2020) Transient receptor potential Ankyrin 1 contributes to lysophosphatidylcholine-induced intracellular calcium regulation and THP-1-derived macrophage activation. J Membr Biol 253:43–55. https://doi.org/10.1007/s00232-019-00104-2

    Article  CAS  PubMed  Google Scholar 

  29. Jeong H, Kim YH, Lee Y, Jung SJ, Oh SB (2017) TRPM2 contributes to LPC-induced intracellular Ca(2+) influx and microglial activation. Biochem Biophys Res Commun 485:301–306. https://doi.org/10.1016/j.bbrc.2017.02.087

    Article  CAS  PubMed  Google Scholar 

  30. Bicket A, Mehrabi P, Naydenova Z, Wong V, Donaldson L, Stagljar I, Coe IR (2016) Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding. Am J Physiol Cell Physiol 310:C808–C820. https://doi.org/10.1152/ajpcell.00243.2015

    Article  PubMed  PubMed Central  Google Scholar 

  31. Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR (2012) Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 287:11579–11591. https://doi.org/10.1074/jbc.M111.336032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee HJ, Ko HJ, Song DK, Jung YJ (2018) Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production through the protein kinase A-phosphatidylinositol 3 kinase-p38 mitogen-activated protein kinase signaling pathway during mycobacterium tuberculosis infection in mouse macrophages. Front Immunol 9:920. https://doi.org/10.3389/fimmu.2018.00920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Depaoli MR, Karsten F, Madreiter-Sokolowski CT, Klec C, Gottschalk B, Bischof H, Eroglu E, Waldeck-Weiermair M, Simmen T, Graier WF, Malli R (2018) Real-time imaging of mitochondrial ATP dynamics reveals the metabolic setting of single cells. Cell Rep 25:501–12.e3. https://doi.org/10.1016/j.celrep.2018.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Syed M, Skonberg C, Hansen SH (2016) Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: possible role in drug induced liver injury (DILI). Toxicol In Vitro 31:93–102. https://doi.org/10.1016/j.tiv.2015.11.020

    Article  CAS  PubMed  Google Scholar 

  35. Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I (2011) The pathophysiology of non-steroidal anti-inflammatory drug (NSAID)-induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr 48:107–111. https://doi.org/10.3164/jcbn.10-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jordani MC, Santos AC, Prado IM, Uyemura SA, Curti C (2000) Flufenamic acid as an inducer of mitochondrial permeability transition. Mol Cell Biochem 210:153–158. https://doi.org/10.1023/a:1007185825101

    Article  CAS  PubMed  Google Scholar 

  37. Li RW, Seto SW, Au AL, Kwan YW, Chan SW, Lee SM, Tse CM, Leung GP (2009) Inhibitory effect of nonsteroidal anti-inflammatory drugs on adenosine transport in vascular smooth muscle cells. Eur J Pharmacol 612:15–20. https://doi.org/10.1016/j.ejphar.2009.04.017

    Article  CAS  PubMed  Google Scholar 

  38. MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G, Kristariyanto Y, van den Bosch M, Mudaliar M, McCarthy PC, Pattison MJ, Pedrioli PG, Barton GJ, Toth R, Prescott A, Arthur JS (2013) PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol 190:565–577. https://doi.org/10.4049/jimmunol.1202462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Na YR, Jung D, Yoon BR, Lee WW, Seok SH (2015) Endogenous prostaglandin E2 potentiates anti-inflammatory phenotype of macrophage through the CREB-C/EBP-β cascade. Eur J Immunol 45:2661–2671. https://doi.org/10.1002/eji.201545471

    Article  CAS  PubMed  Google Scholar 

  40. Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135. https://doi.org/10.1038/nrm.2017.95

    Article  CAS  PubMed  Google Scholar 

  41. Hardie DG (2004) The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci 117:5479–5487. https://doi.org/10.1242/jcs.01540

    Article  CAS  PubMed  Google Scholar 

  42. Kim JM, Han HJ, Hur YH, Quan H, Kwak SH, Choi JI, Bae HB (2015) Stearoyl lysophosphatidylcholine prevents lipopolysaccharide-induced extracellular release of high mobility group box-1 through AMP-activated protein kinase activation. Int Immunopharmacol 28:540–545. https://doi.org/10.1016/j.intimp.2015.07.010

    Article  CAS  PubMed  Google Scholar 

  43. Quan H, Hur YH, Xin C, Kim JM, Choi JI, Kim MY, Bae HB (2016) Stearoyl lysophosphatidylcholine enhances the phagocytic ability of macrophages through the AMP-activated protein kinase/p38 mitogen activated protein kinase pathway. Int Immunopharmacol 39:328–334. https://doi.org/10.1016/j.intimp.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  44. Rubin H (1975) Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc Natl Acad Sci U S A 72:3551–3555. https://doi.org/10.1073/pnas.72.9.3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qiao W, Wong KHM, Shen J, Wang W, Wu J, Li J, Lin Z, Chen Z, Matinlinna JP, Zheng Y, Wu S, Liu X, Lai KP, Chen Z, Lam YW, Cheung KMC, Yeung KWK (2021) TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun 12:2885. https://doi.org/10.1038/s41467-021-23005-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawahara K, Sato R, Iwabuchi S, Matsuyama D (2008) Rhythmic fluctuations in the concentration of intracellular Mg2+ in association with spontaneous rhythmic contraction in cultured cardiac myocytes. Chronobiol Int 25:868–881. https://doi.org/10.1080/07420520802536387

    Article  CAS  PubMed  Google Scholar 

  47. Nadolni W, Zierler S (2018) The channel-kinase TRPM7 as novel regulator of immune system homeostasis. Cells 7:109. https://doi.org/10.3390/cells7080109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schilling T, Miralles F, Eder C (2014) TRPM7 regulates proliferation and polarisation of macrophages. J Cell Sci 127:4561–4566. https://doi.org/10.1242/jcs.151068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chubanov V, Gudermann T (2020) Mapping TRPM7 function by NS8593. Int J Mol Sci 21:7017. https://doi.org/10.3390/ijms21197017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M (2018) Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol 9:1605. https://doi.org/10.3389/fimmu.2018.01605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mantzarlis K, Tsolaki V, Zakynthinos E (2017) Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017:5985209. https://doi.org/10.1155/2017/5985209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arts RJ, Gresnigt MS, Joosten LA, Netea MG (2017) Cellular metabolism of myeloid cells in sepsis. J Leukoc Biol 101:151–164. https://doi.org/10.1189/jlb.4MR0216-066R

    Article  CAS  PubMed  Google Scholar 

  53. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435:297–312. https://doi.org/10.1042/BJ20110162

    Article  CAS  PubMed  Google Scholar 

  54. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115. https://doi.org/10.2144/000113610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ding C, Han F, Xiang H, Wang Y, Dou M, Xia X, Li Y, Zheng J, Ding X, Xue W, Tian P (2019) Role of prostaglandin E2 receptor 4 in the modulation of apoptosis and mitophagy during ischemia/reperfusion injury in the kidney. Mol Med Rep 20:3337–3346. https://doi.org/10.3892/mmr.2019.10576

    Article  CAS  PubMed  Google Scholar 

  56. Mirakaj V, Gatidou D, Pötzsch C, König K, Rosenberger P (2011) Netrin-1 signaling dampens inflammatory peritonitis. J Immunol 186:549–555. https://doi.org/10.4049/jimmunol.1002671

    Article  CAS  PubMed  Google Scholar 

  57. Duan L, Woolbright BL, Jaeschke H, Ramachandran A (2020) Late protective effect of Netrin-1 in the murine acetaminophen hepatotoxicity model. Toxicol Sci 175:168–181. https://doi.org/10.1093/toxsci/kfaa041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aherne CM, Collins CB, Masterson JC, Tizzano M, Boyle TA, Westrich JA, Parnes JA, Furuta GT, Rivera-Nieves J, Eltzschig HK (2012) Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut 61:695–705. https://doi.org/10.1136/gutjnl-2011-300012

    Article  CAS  PubMed  Google Scholar 

  59. Yang LV, Radu CG, Wang L, Riedinger M, Witte ON (2005) Gi-independent macrophage chemotaxis to lysophosphatidylcholine via the immunoregulatory GPCR G2A. Blood 105:1127–1134. https://doi.org/10.1182/blood-2004-05-1916

    Article  CAS  PubMed  Google Scholar 

  60. Watts ER, Walmsley SR (2019) Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med 25:33–46. https://doi.org/10.1016/j.molmed.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  61. Bowser JL, Lee JW, Yuan X, Eltzschig HK (2017) The hypoxia-adenosine link during inflammation. J Appl Physiol 123:1303–1320. https://doi.org/10.1152/japplphysiol.00101.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Grenz A, Homann D, Eltzschig HK (2011) Extracellular adenosine: a safety signal that dampens hypoxia-induced inflammation during ischemia. Antioxid Redox Signal 15:2221–2234. https://doi.org/10.1089/ars.2010.3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shweta MKP, Chanda S, Singh SB, Ganju L (2015) A comparative immunological analysis of CoCl2 treated cells with in vitro hypoxic exposure. Biometals 28:175–185. https://doi.org/10.1007/s10534-014-9813-9

    Article  CAS  PubMed  Google Scholar 

  64. Dou L, Chen YF, Cowan PJ, Chen XP (2018) Extracellular ATP signaling and clinical relevance. Clin Immunol 188:67–73. https://doi.org/10.1016/j.clim.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  65. Lin JH, Lou N, Kang N, Takano T, Hu F, Han X, Xu Q, Lovatt D, Torres A, Willecke K, Yang J, Kang J, Nedergaard M (2008) A central role of connexin 43 in hypoxic preconditioning. J Neurosci 28:681–695. https://doi.org/10.1523/JNEUROSCI.3827-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turner MS, Haywood GA, Andreka P, You L, Martin PE, Evans WH, Webster KA, Bishopric NH (2004) Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels. Circ Res 95:726–733. https://doi.org/10.1161/01.RES.0000144805.11519.1e

    Article  CAS  PubMed  Google Scholar 

  67. Sivak KV, Vasin AV, Egorov VV, Tsevtkov VB, Kuzmich NN, Savina VA, Kiselev OI (2016) Adenosine A2A receptor as a drug target for treatment of sepsis. Mol Biol (Mosk) 50:231–245. https://doi.org/10.7868/S0026898416020233

    Article  CAS  PubMed  Google Scholar 

  68. Wang Z, Kong L, Tan S, Zhang Y, Song X, Wang T, Lin Q, Wu Z, Xiang P, Li C, Gao L, Liang X, Ma C (2020) Zhx2 accelerates sepsis by promoting macrophage glycolysis via Pfkfb3. J Immunol 204:2232–2241. https://doi.org/10.4049/jimmunol.1901246

    Article  CAS  PubMed  Google Scholar 

  69. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB (2018) Mitochondrial membrane potential. Anal Biochem 552:50–59. https://doi.org/10.1016/j.ab.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  70. Basu M, Gupta P, Dutta A, Jana K, and Ukil A (2020) Increased host ATP efflux and its conversion to extracellular adenosine is crucial for establishing Leishmania infection. J Cell Sci 133. https://doi.org/10.1242/jcs.239939

  71. Silva D, Moreira D, Cordeiro-da-Silva A, Quintas C, Gonçalves J, Fresco P (2020) Intracellular adenosine released from THP-1 differentiated human macrophages is involved in an autocrine control of Leishmania parasitic burden, mediated by adenosine A(2A) and A(2B) receptors. Eur J Pharmacol 885:173504. https://doi.org/10.1016/j.ejphar.2020.173504

    Article  CAS  PubMed  Google Scholar 

  72. Boison D, Jarvis MF (2021) Adenosine kinase: A key regulator of purinergic physiology. Biochem Pharmacol 187:114321. https://doi.org/10.1016/j.bcp.2020.114321

    Article  CAS  PubMed  Google Scholar 

  73. Borowiec A, Lechward K, Tkacz-Stachowska K, Składanowski AC (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5′-nucleotidases. Acta Biochim Pol 53:269–278

    Article  CAS  PubMed  Google Scholar 

  74. Nickel AG, Kohlhaas M, Bertero E, Wilhelm D, Wagner M, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C (2020) CaMKII does not control mitochondrial Ca(2+) uptake in cardiac myocytes. J Physiol 598:1361–1376. https://doi.org/10.1113/JP276766

    Article  CAS  PubMed  Google Scholar 

  75. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109. https://doi.org/10.1038/ncomms1108

    Article  CAS  PubMed  Google Scholar 

  76. Schappe MS, Szteyn K, Stremska ME, Mendu SK, Downs TK, Seegren PV, Mahoney MA, Dixit S, Krupa JK, Stipes EJ, Rogers JS, Adamson SE, Leitinger N, Desai BN (2018) Chanzyme TRPM7 mediates the Ca(2+) influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity 48:59-74.e5. https://doi.org/10.1016/j.immuni.2017.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu Z, Zhang W, Zhang M, Zhu H, Moriasi C, Zou MH (2015) Liver kinase B1 suppresses lipopolysaccharide-induced nuclear factor κB (NF-κB) activation in macrophages. J Biol Chem 290:2312–2320. https://doi.org/10.1074/jbc.M114.616441

    Article  CAS  PubMed  Google Scholar 

  78. Yang Y, Dong R, Hu D, Chen Z, Fu M, Wang DW, Xu X, Tu L (2017) Liver kinase B1/AMP-activated protein kinase pathway activation attenuated the progression of endotoxemia in the diabetic mice. Cell Physiol Biochem 42:761–779. https://doi.org/10.1159/000478068

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Wang Y, Liu X, Dagda RK, Zhang Y (2017) How AMPK and PKA interplay to regulate mitochondrial function and survival in models of ischemia and diabetes. Oxid Med Cell Longev 2017:4353510. https://doi.org/10.1155/2017/4353510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Al-Taei S, Salimu J, Spary LK, Clayton A, Lester JF, Tabi Z (2017) Prostaglandin E(2)-mediated adenosinergic effects on CD14(+) cells: self-amplifying immunosuppression in cancer. Oncoimmunology 6:e1268308. https://doi.org/10.1080/2162402X.2016.1268308

    Article  CAS  PubMed  Google Scholar 

  81. Wang J, Liu Y, Ding H, Shi X, Ren H (2021) Mesenchymal stem cell-secreted prostaglandin E(2) ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization. Stem Cell Res Ther 12:15. https://doi.org/10.1186/s13287-020-02070-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Claro V, Ferro A (2020) Netrin-1: focus on its role in cardiovascular physiology and atherosclerosis. JRSM Cardiovasc Dis 9:2048004020959574. https://doi.org/10.1177/2048004020959574

    Article  PubMed  PubMed Central  Google Scholar 

  83. Amunugama K, Pike DP, Ford DA (2021) The lipid biology of sepsis. J Lipid Res 62:100090. https://doi.org/10.1016/j.jlr.2021.100090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu J, Du J, Cheng X, Zhang X, Li Y, Fu X, Chen X (2019) Effect of Netrin-1 anti-inflammatory factor on acute lung injury in sepsis rats. Med Sci Monit 25:7928–35. https://doi.org/10.12659/MSM.917279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leslie CC (2015) Cytosolic phospholipase A2: physiological function and role in disease. J Lipid Res 8:1386–402. https://doi.org/10.1194/jlr.R057588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shin-Hae Kang for helping AMY with the experiments.

Funding

This research was supported by the basic research program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science ICT (NRF-2020R1F1A1067708).

Author information

Authors and Affiliations

Authors

Contributions

DKS conceived, DKS and AMY designed this study. AMY did the experiments. AMY and DKS analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Dong-Keun Song.

Ethics declarations

Ethics approval

We hereby confirm that we have complied with ethical standards.

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11302-023-09962-x

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, A.M., Song, DK. RETRACTED ARTICLE: Lysophosphatidylcholine induces adenosine release from macrophages via TRPM7-mediated mitochondrial activation. Purinergic Signalling 18, 317–343 (2022). https://doi.org/10.1007/s11302-022-09878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09878-y

Keywords

Navigation