Skip to main content
Log in

P2X receptors in the balance between inflammation and pathogen control in sepsis

  • Journal Club
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

Not applicable.

References

  1. Chambers CA, Dadelahi AS, Moley CR et al (2022) Nucleotide receptors mediate protection against neonatal sepsis and meningitis caused by alpha-hemolysin expressing Escherichia coli K1. FASEB J 36:1–17. https://doi.org/10.1096/fj.202101485R

    Article  Google Scholar 

  2. Singer M, Deutschman CS, Seymour C et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA - J Am Med Assoc 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  Google Scholar 

  3. Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874. https://doi.org/10.1038/nri3552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Der Poll T, Van De Veerdonk FL, Scicluna BP, Netea MG (2017) The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420. https://doi.org/10.1038/nri.2017.36

    Article  CAS  PubMed  Google Scholar 

  5. Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211. https://doi.org/10.1016/S0140-6736(19)32989-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cauwels A, Rogge E, Vandendriessche B et al (2014) Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis 5:1–7. https://doi.org/10.1038/cddis.2014.70

    Article  CAS  Google Scholar 

  7. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317. https://doi.org/10.1038/nature13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sumi Y, Woehrle T, Chen Y et al (2014) Plasma ATP is required for neutrophil activation in a mouse sepsis model. Shock 42:142–147. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Illes P, Müller CE, Jacobson KA, et al (2020) Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 489–514. https://doi.org/10.1111/bph.15299

  10. Jacobson KA, Delicado EG, Gachet C et al (2020) Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 177:2413–2433. https://doi.org/10.1111/bph.15005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 9:1–31. https://doi.org/10.3389/fphar.2018.00052

    Article  CAS  Google Scholar 

  12. Coutinho-Silva R, Savio LEB (2021) Purinergic signalling in host innate immune defence against intracellular pathogens. Biochem Pharmacol 187:114405. https://doi.org/10.1016/j.bcp.2021.114405

    Article  CAS  PubMed  Google Scholar 

  13. Savio LEB, Coutinho-Silva R (2019) Immunomodulatory effects of P2X7 receptor in intracellular parasite infections. Curr Opin Pharmacol 47:53–58. https://doi.org/10.1016/j.coph.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  14. Savio LEB, Leite-Aguiar R, Alves VS et al (2021) Purinergic signaling in the modulation of redox biology. Redox Biol 47:102137. https://doi.org/10.1016/j.redox.2021.102137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leite-Aguiar R, Alves VS, Savio LEB, Coutinho-Silva R (2021) Targeting purinergic signaling in the dynamics of disease progression in sepsis. Front Pharmacol 11: https://doi.org/10.3389/fphar.2020.626484

  16. Jiang LH, Mackenzie AB, North RA, Surprenant A (2000) Brilliant blue G selectively blocks ATP-gated rat P2X7 receptors. Mol Pharmacol 58:82–88. https://doi.org/10.1124/mol.58.1.82

    Article  CAS  PubMed  Google Scholar 

  17. Jo S, Bean BP (2011) Inhibition of neuronal voltage-gated sodium channels by Brilliant Blue G. Mol Pharmacol 80:247–257. https://doi.org/10.1124/mol.110.070276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amaral EP, Ribeiro SCM, Lanes VR, et al (2014) Pulmonary infection with hypervirulent mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS Pathog 10:. https://doi.org/10.1371/journal.ppat.1004188

  19. Csóka B, Németh ZH, Szabó I et al (2018) Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI insight 3:1–18. https://doi.org/10.1172/jci.insight.99431

    Article  Google Scholar 

  20. Luiz Savio B, Mello PDA, Figliuolo VR et al (2017) CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J Hepatol 67:716–726. https://doi.org/10.1016/j.jhep.2017.05.021.CD39

  21. Savio LEB, Andrade MGJ, de Andrade MP et al (2017) P2X7 Receptor signaling contributes to sepsis-associated brain dysfunction. Mol Neurobiol 54:6459–6470. https://doi.org/10.1007/s12035-016-0168-9

    Article  CAS  PubMed  Google Scholar 

  22. Larrouyet-sarto ML, Tamura AS, Alves VS, et al (2020) P2X7 receptor deletion attenuates oxidative stress and liver damage in sepsis. https://doi.org/10.1007/s11302-020-09746-7

  23. Wu X, Ren J, Chen G et al (2017) Systemic blockade of P2X7 receptor protects against sepsis-induced intestinal barrier disruption. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-04231-5

    Article  CAS  Google Scholar 

  24. Csóka B, Németh ZH, Töro G et al (2015) CD39 improves survival in microbial sepsis by attenuating systemic inflammation. FASEB J 29:25–36. https://doi.org/10.1096/fj.14-253567

    Article  CAS  PubMed  Google Scholar 

  25. Yang M, Lu L, Kang Z et al (2019) Overexpressed CD39 mitigates sepsis-induced kidney epithelial cell injury via suppressing the activation of NLR family pyrin domain containing 3. Int J Mol Med 44:1707–1718. https://doi.org/10.3892/ijmm.2019.4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sueyoshi K, Ledderose C, Shen Y et al (2019) Lipopolysaccharide suppresses T cells by generating extracellular ATP that impairs their mitochondrial function via P2Y11 receptors. J Biol Chem 294:6283–6293. https://doi.org/10.1074/jbc.RA118.007188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by funds from the Conselho Nacional de Desenvolvimento Cientifico e Tecnológico do Brasil – CNPq (305857/2020–7), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ.

Author information

Authors and Affiliations

Authors

Contributions

L.E.B.S wrote the manuscript.

Corresponding author

Correspondence to Luiz Eduardo Baggio Savio.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savio, L.E.B. P2X receptors in the balance between inflammation and pathogen control in sepsis. Purinergic Signalling 18, 241–243 (2022). https://doi.org/10.1007/s11302-022-09870-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09870-6

Navigation