Skip to main content
Log in

Nucleotide P2Y1 receptor agonists are in vitro and in vivo prodrugs of A1/A3 adenosine receptor agonists: implications for roles of P2Y1 and A1/A3 receptors in physiology and pathology

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Rapid phosphoester hydrolysis of endogenous purine and pyrimidine nucleotides has challenged the characterization of the role of P2 receptors in physiology and pathology. Nucleotide phosphoester stabilization has been pursued on a number of medicinal chemistry fronts. We investigated the in vitro and in vivo stability and pharmacokinetics of prototypical nucleotide P2Y1 receptor (P2Y1R) agonists and antagonists. These included the riboside nucleotide agonist 2-methylthio-ADP and antagonist MRS2179, as well as agonist MRS2365 and antagonist MRS2500 containing constrained (N)-methanocarba rings, which were previously reported to form nucleotides that are more slowly hydrolyzed at the α-phosphoester compared with the ribosides. In vitro incubations in mouse and human plasma and blood demonstrated the rapid hydrolysis of these compounds to nucleoside metabolites. This metabolism was inhibited by EDTA to chelate divalent cations required by ectonucleotidases for nucleotide hydrolysis. This rapid hydrolysis was confirmed in vivo in mouse pharmacokinetic studies that demonstrate that MRS2365 is a prodrug of the nucleoside metabolite AST-004 (MRS4322). Furthermore, we demonstrate that the nucleoside metabolites of MRS2365 and 2-methylthio-ADP are adenosine receptor (AR) agonists, notably at A3 and A1ARs. In vivo efficacy of MRS2365 in murine models of traumatic brain injury and stroke can be attributed to AR activation by its nucleoside metabolite AST-004, rather than P2Y1R activation. This research suggests the importance of reevaluation of previous in vitro and in vivo research of P2YRs and P2XRs as there is a potential that the pharmacology attributed to nucleotide agonists is due to AR activation by active nucleoside metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AST-004:

(1R,2R,3S,4R,5S)-4-(6-amino-2-(methylthio)-9H-purin-9-yl)-1-(hydroxymethyl)bicyclo[3.1.0]hexane-2,3-diol

CCPA:

2-Chloro-N6-cyclopentyladenosine

CGS21680:

2-(4-(2-carboxyethyl)phenethylamino)-5′-N-ethylcarboxamidoadenosine

CHO:

Chinese hamster ovary 

2-MeS-ADP:

2-methylthio-adenosine 5′-diphosphate

HEK:

Human embryonic kidney

I-AB-MECA:

[125I]N6-(4-amino-3-iodobenzyl)adenosine-5′-N-methyluronamide

LLOQ:

Lower limit of quantitation

NECA:

Adenosine-5′-N-ethyluronamide

R-PIA:

[3H]N6-R-phenylisopropyladenosine

PSB-603:

8-[4-[4-(4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine

ULOQ:

Upper limit of quantitation.

References

  1. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol 68(3):213–237. https://doi.org/10.1113/jphysiol.1929.sp002608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Galindo A, Krnjevic K, Schwartz S (1967) Micro-iontophoretic studies on neurones in the cuneate nucleus. J Physiol 192(2):359–377. https://doi.org/10.1113/jphysiol.1967.sp008305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40(4):668–688. https://doi.org/10.1111/j.1476-5381.1970.tb10646.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burnstock GA (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. Raven Press, pp 107–118

  5. van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33(5):999–1005. https://doi.org/10.1111/j.1471-4159.1979.tb05236.x

    Article  PubMed  Google Scholar 

  6. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98(3):1591–1625. https://doi.org/10.1152/physrev.00049.2017

    Article  CAS  PubMed  Google Scholar 

  7. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16(5):433–440. https://doi.org/10.1016/0306-3623(85)90001-1

    Article  CAS  PubMed  Google Scholar 

  8. Boeynaems JM, Communi D, Gonzalez NS, Robaye B (2005) Overview of the P2 receptors. Semin Thromb Hemost 31(2):139–149. https://doi.org/10.1055/s-2005-869519

    Article  CAS  PubMed  Google Scholar 

  9. Zimmet J, Jarlebark L, Hammarberg T, van Galen PJ, Jacobson KA, Heilbronn E (1993) Synthesis and biological activity of novel 2-Thio derivatives of Atp. Nucleosides Nucleotides 12(1):1–20. https://doi.org/10.1080/07328319308016190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

  11. Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis found Symp 276:113-128; discussion 128-130, 233-117, 275-181

  12. Binet L, Burstein M (1950) Lung and vascular action of adenosin triphosphate. Presse Med 58(68):1201–1203

    CAS  PubMed  Google Scholar 

  13. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233(2):309–319. https://doi.org/10.1042/bj2330309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El-Tayeb A, Qi A, Muller CE (2006) Synthesis and structure-activity relationships of uracil nucleotide derivatives and analogues as agonists at human P2Y2, P2Y4, and P2Y6 receptors. J Med Chem 49(24):7076–7087. https://doi.org/10.1021/jm060848j

    Article  CAS  PubMed  Google Scholar 

  15. Eliahu SE, Camden J, Lecka J, Weisman GA, Sevigny J, Gelinas S, Fischer B (2009) Identification of hydrolytically stable and selective P2Y(1) receptor agonists. Eur J Med Chem 44(4):1525–1536. https://doi.org/10.1016/j.ejmech.2008.07.015

    Article  CAS  PubMed  Google Scholar 

  16. Azran S, Forster D, Danino O, Nadel Y, Reiser G, Fischer B (2013) Highly efficient biocompatible neuroprotectants with dual activity as antioxidants and P2Y receptor agonists. J Med Chem 56(12):4938–4952. https://doi.org/10.1021/jm400197m

    Article  CAS  PubMed  Google Scholar 

  17. Azran S, Danino O, Forster D, Kenigsberg S, Reiser G, Dixit M, Singh V, Major DT, Fischer B (2015) Identification of highly promising antioxidants/neuroprotectants based on nucleoside 5'-phosphorothioate scaffold. Synthesis, activity, and mechanisms of action. J Med Chem 58(21):8427–8443. https://doi.org/10.1021/acs.jmedchem.5b00575

    Article  CAS  PubMed  Google Scholar 

  18. Ravi RG, Kim HS, Servos J, Zimmermann H, Lee K, Maddileti S, Boyer JL, Harden TK, Jacobson KA (2002) Adenine nucleotide analogues locked in a northern methanocarba conformation: enhanced stability and potency as P2Y(1) receptor agonists. J Med Chem 45(10):2090–2100. https://doi.org/10.1021/jm010538v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hechler B, Nonne C, Roh EJ, Cattaneo M, Cazenave JP, Lanza F, Jacobson KA, Gachet C (2006) MRS2500 [2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate], a potent, selective, and stable antagonist of the platelet P2Y1 receptor with strong antithrombotic activity in mice. J Pharmacol Exp Ther 316(2):556–563. https://doi.org/10.1124/jpet.105.094037

    Article  CAS  PubMed  Google Scholar 

  20. Shen JB, Cronin C, Sonin D, Joshi BV, Gongora Nieto M, Harrison D, Jacobson KA, Liang BT (2007) P2X purinergic receptor-mediated ionic current in cardiac myocytes of calsequestrin model of cardiomyopathy: implications for the treatment of heart failure. Am J Physiol Heart Circ Physiol 292(2):H1077–H1084. https://doi.org/10.1152/ajpheart.00515.2006

    Article  CAS  PubMed  Google Scholar 

  21. Kuboyama K, Harada H, Tozaki-Saitoh H, Tsuda M, Ushijima K, Inoue K (2011) Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription and cerebral damage in a rat model of cerebral ischemia. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 31(9):1930–1941. https://doi.org/10.1038/jcbfm.2011.49

    Article  CAS  Google Scholar 

  22. Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS (2013) P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension 62(2):263–273. https://doi.org/10.1161/HYPERTENSIONAHA.113.01487

    Article  CAS  PubMed  Google Scholar 

  23. Koch H, Bespalov A, Drescher K, Franke H, Krugel U (2015) Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 40(2):305–314. https://doi.org/10.1038/npp.2014.173

    Article  CAS  PubMed  Google Scholar 

  24. Wong PC, Watson C, Crain EJ (2016) The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J Thromb Thrombolysis 41(3):514–521. https://doi.org/10.1007/s11239-015-1302-7

    Article  CAS  PubMed  Google Scholar 

  25. Wu J, Cheng Y, Zhang R, Liu D, Luo YM, Chen KL, Ren S, Zhang J (2017) P2Y1R is involved in visceral hypersensitivity in rats with experimental irritable bowel syndrome. World J Gastroenterol 23(34):6339–6349. https://doi.org/10.3748/wjg.v23.i34.6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shigetomi E, Hirayama YJ, Ikenaka K, Tanaka KF, Koizumi S (2018) Role of purinergic receptor P2Y1 in spatiotemporal Ca(2+) dynamics in astrocytes. J Neurosci 38(6):1383–1395. https://doi.org/10.1523/JNEUROSCI.2625-17.2017

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, Peter J, Plescher M, Hansen JN, Blank N, Keller A, Fuhrmann M, Henneberger C, Halle A, Petzold GC (2018) P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med 215(6):1649–1663. https://doi.org/10.1084/jem.20171487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng W, Talley Watts L, Holstein DM, Wewer J, Lechleiter JD (2013) P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 33(4):600–611. https://doi.org/10.1038/jcbfm.2012.214

    Article  CAS  Google Scholar 

  29. Talley Watts L, Sprague S, Zheng W, Garling RJ, Jimenez D, Digicaylioglu M, Lechleiter J (2013) Purinergic 2Y(1) receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model. J Neurotrauma 30(1):55–66. https://doi.org/10.1089/neu.2012.2488

    Article  PubMed  Google Scholar 

  30. Baurand A, Raboisson P, Freund M, Leon C, Cazenave JP, Bourguignon JJ, Gachet C (2001) Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol 412(3):213–221. https://doi.org/10.1016/s0014-2999(01)00733-6

    Article  CAS  PubMed  Google Scholar 

  31. Cattaneo M, Lecchi A, Ohno M, Joshi BV, Besada P, Tchilibon S, Lombardi R, Bischofberger N, Harden TK, Jacobson KA (2004) Antiaggregatory activity in human platelets of potent antagonists of the P2Y 1 receptor. Biochem Pharmacol 68(10):1995–2002. https://doi.org/10.1016/j.bcp.2004.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dunne H, Cowman J, Kenny D (2015) MRS2179: a novel inhibitor of platelet function. BMC Proc 9(Suppl 1):A2

    Article  PubMed Central  Google Scholar 

  33. Chen J, Wang L, Zhang Y, Yang J (2012) P2Y1 purinoceptor inhibition reduces extracellular signal-regulated protein kinase 1/2 phosphorylation in spinal cord and dorsal root ganglia: implications for cancer-induced bone pain. Acta Biochim Biophys Sin Shanghai 44(4):367–372. https://doi.org/10.1093/abbs/gms007

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Holstein JD, Upadhyay G, Lin DT, Conway S, Muller E, Lechleiter JD (2007) Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J Neurosci 27(24):6510–6520. https://doi.org/10.1523/JNEUROSCI.1256-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Muller CE (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52(13):3994–4006. https://doi.org/10.1021/jm900413e

    Article  CAS  PubMed  Google Scholar 

  36. Behrenswerth A, Volz N, Torang J, Hinz S, Brase S, Muller CE (2009) Synthesis and pharmacological evaluation of coumarin derivatives as cannabinoid receptor antagonists and inverse agonists. Bioorg Med Chem 17(7):2842–2851. https://doi.org/10.1016/j.bmc.2009.02.027

    Article  CAS  PubMed  Google Scholar 

  37. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Muller CE (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11(3):389–407. https://doi.org/10.1007/s11302-015-9460-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao ZG, Blaustein JB, Gross AS, Melman N, Jacobson KA (2003) N6-substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65(10):1675–1684. https://doi.org/10.1016/s0006-2952(03)00153-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yegutkin GG, Burnstock G (1999) Steady-state binding of adenine nucleotides ATP, ADP and AMP to rat liver and adipose plasma membranes. J Recept Signal Transduct Res 19(1–4):437–448. https://doi.org/10.3109/10799899909036663

    Article  CAS  PubMed  Google Scholar 

  40. Gao ZG, Kim SK, Biadatti T, Chen W, Lee K, Barak D, Kim SG, Johnson CR, Jacobson KA (2002) Structural determinants of A(3) adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45(20):4471–4484. https://doi.org/10.1021/jm020211+

    Article  CAS  PubMed  Google Scholar 

  41. Gao ZG, Jacobson KA (2004) Partial agonists for A(3) adenosine receptors. Curr Top Med Chem 4(8):855–862. https://doi.org/10.2174/1568026043450989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dias DA, de Barros PB, Dos Santos LD, Dos Santos PM, Arruda CCP, Schetinger MRC, Leal DBR, Dos Santos Jaques JA (2017) Characterization of ectonucleoside triphosphate diphosphohydrolase (E-NTPDase; EC 3.6.1.5) activity in mouse peritoneal cavity cells. Cell Biochem Funct 35(7):358–363. https://doi.org/10.1002/cbf.3281

    Article  CAS  PubMed  Google Scholar 

  43. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278(15):13468–13479. https://doi.org/10.1074/jbc.M300569200

    Article  CAS  PubMed  Google Scholar 

  44. Aslam M, Sedding D, Koshty A, Santoso S, Schulz R, Hamm C, Gunduz D (2013) Nucleoside triphosphates inhibit ADP, collagen, and epinephrine-induced platelet aggregation: role of P2Y(1) and P2Y(1)(2) receptors. Thromb Res 132(5):548–557. https://doi.org/10.1016/j.thromres.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  45. Vetri F, Xu H, Mao L, Paisansathan C, Pelligrino DA (2011) ATP hydrolysis pathways and their contributions to pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 301(4):H1369–H1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caiazzo E, Morello S, Carnuccio R, Ialenti A, Cicala C (2019) The ecto-5'-nucleotidase/cd73 inhibitor, alpha,beta-methylene adenosine 5′-diphosphate, exacerbates carrageenan-induced pleurisy in rat. Front Pharmacol 10:775. https://doi.org/10.3389/fphar.2019.00775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maguire MH, Krishnakantha TP, Aronson DM (1984) Human placental 5′-nucleotidase: purification and properties. Placenta 5(1):21–39. https://doi.org/10.1016/s0143-4004(84)80046-6

    Article  CAS  PubMed  Google Scholar 

  48. Humphries RG, Tomlinson W, Clegg JA, Ingall AH, Kindon ND, Leff P (1995) Pharmacological profile of the novel P2T-purinoceptor antagonist, FPL 67085 in vitro and in the anaesthetized rat in vivo. Br J Pharmacol 115(6):1110–1116. https://doi.org/10.1111/j.1476-5381.1995.tb15925.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ingall AH, Dixon J, Bailey A, Coombs ME, Cox D, McInally JI, Hunt SF, Kindon ND, Teobald BJ, Willis PA, Humphries RG, Leff P, Clegg JA, Smith JA, Tomlinson W (1999) Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem 42(2):213–220. https://doi.org/10.1021/jm981072s

    Article  CAS  PubMed  Google Scholar 

  50. Kochanek PM, Verrier JD, Wagner AK, Jackson EK (2013) The many roles of adenosine in traumatic brain injury. In: Masino S and Boison D (eds) Adenosine: A Key Link between Metabolism and Brain Activity. Springer, pp 307–322. https://doi.org/10.1007/978-1-4614-3903-5_15

  51. Fox IH, Kelley WN (1978) The role of adenosine and 2′-deoxyadenosine in mammalian cells. Annu Rev Biochem 47:655–686. https://doi.org/10.1146/annurev.bi.47.070178.003255

    Article  CAS  PubMed  Google Scholar 

  52. Jensen K, Johnson LA, Jacobson PA, Kachler S, Kirstein MN, Lamba J, Klotz KN (2012) Cytotoxic purine nucleoside analogues bind to A1, A2A, and A3 adenosine receptors. Naunyn Schmiedeberg's Arch Pharmacol 385(5):519–525. https://doi.org/10.1007/s00210-011-0719-6

    Article  CAS  Google Scholar 

  53. Ohno M, Gao ZG, Van Rompaey P, Tchilibon S, Kim SK, Harris BA, Gross AS, Duong HT, Van Calenbergh S, Jacobson KA (2004) Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position. Bioorg Med Chem 12(11):2995–3007. https://doi.org/10.1016/j.bmc.2004.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciancetta A, O'Connor RD, Paoletta S, Jacobson KA (2017) Demystifying P2Y1 receptor ligand recognition through docking and molecular dynamics analyses. J Chem Inf Model 57(12):3104–3123. https://doi.org/10.1021/acs.jcim.7b00528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Houston D, Ohno M, Nicholas RA, Jacobson KA, Harden TK (2006) [32P]2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. Br J Pharmacol 147(5):459–467. https://doi.org/10.1038/sj.bjp.0706453

    Article  CAS  PubMed  Google Scholar 

  56. Bird JE, Wang X, Smith PL, Barbera F, Huang C, Schumacher WA (2012) A platelet target for venous thrombosis? P2Y1 deletion or antagonism protects mice from vena cava thrombosis. J Thromb Thrombolysis 34(2):199–207. https://doi.org/10.1007/s11239-012-0745-3

    Article  CAS  PubMed  Google Scholar 

  57. Mane N, Jimenez-Sabado V, Jimenez M (2016) BPTU, an allosteric antagonist of P2Y1 receptor, blocks nerve mediated inhibitory neuromuscular responses in the gastrointestinal tract of rodents. Neuropharmacology 110(Pt a):376–385. https://doi.org/10.1016/j.neuropharm.2016.07.033

    Article  CAS  PubMed  Google Scholar 

  58. Bourdon DM, Mahanty SK, Jacobson KA, Boyer JL, Harden TK (2006) (N)-methanocarba-2MeSADP (MRS2365) is a subtype-specific agonist that induces rapid desensitization of the P2Y1 receptor of human platelets. J Thromb Haemost 4(4):861–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Durnin L, Hwang SJ, Kurahashi M, Drumm BT, Ward SM, Sasse KC, Sanders KM, Mutafova-Yambolieva VN (2014) Uridine adenosine tetraphosphate is a novel neurogenic P2Y1 receptor activator in the gut. Proc Natl Acad Sci U S A 111(44):15821–15826. https://doi.org/10.1073/pnas.1409078111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Obach RS, Baxter JG, Liston TE, Silber BM, Jones BC, MacIntyre F, Rance DJ, Wastall P (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283(1):46–58

    CAS  PubMed  Google Scholar 

  61. Conroy S, Kindon N, Kellam B, Stocks MJ (2016) Drug-like antagonists of P2Y receptors-from Lead identification to drug development. J Med Chem 59(22):9981–10005. https://doi.org/10.1021/acs.jmedchem.5b01972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jeanne Rumsey, Christin Vielmuth and Angelika Fischer for skillful technical assistance.

Funding

Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under Award Number R41NS093756, the NIDDK Intramural Research Program (ZIADK31117) and the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore E. Liston.

Ethics declarations

Competing interest

The authors declare they have no competing interest. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Deutsche Forschungsgemeinschaft.

Ethics approval

All studies were conducted under approved University of Texas Health at San Antonio (UTHSA) and Inotiv, Inc. IACUC protocols.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance statement

Extensive chemical efforts have attempted to stabilize nucleotide phosphoester groups to prevent hydrolysis and allow investigation of the in vitro and in vivo effects of P2Y and P2X receptor ligands. Our research demonstrates that prototypical P2Y1 receptor agonists containing an (N)-methanocarba ring system to impede α-phosphoester hydrolysis are rapidly metabolized to nucleoside metabolites with affinity for adenosine receptors, and antagonists are similarly unstable. This research suggests that some P2YR pharmacology observed to date may actually be due in part to adenosine receptor activation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liston, T.E., Hinz, S., Müller, C.E. et al. Nucleotide P2Y1 receptor agonists are in vitro and in vivo prodrugs of A1/A3 adenosine receptor agonists: implications for roles of P2Y1 and A1/A3 receptors in physiology and pathology. Purinergic Signalling 16, 543–559 (2020). https://doi.org/10.1007/s11302-020-09732-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09732-z

Keywords

Navigation