Skip to main content

Advertisement

Log in

The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells

  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The human endometrium undergoes repetitive regeneration cycles in order to recover the functional layer, shed during menses. The basal layer, which remains in charge of endometrial regeneration in every cycle, contains adult stem or progenitor cells of epithelial and mesenchymal lineage. Some pathologies such as adenomyosis, in which endometrial tissue develops within the myometrium, originate from this layer. It is well known that the balance between adenosine triphosphate (ATP) and adenosine plays a crucial role in stem/progenitor cell physiology, influencing proliferation, differentiation, and migration. The extracellular levels of nucleotides and nucleosides are regulated by the ectonucleotidases, such as the nucleoside triphosphate diphosphohydrolase 2 (NTPDase2). NTPDase2 is a membrane-expressed enzyme found in cells of mesenchymal origin such as perivascular cells of different tissues and the stem cells of adult neurogenic regions. The aim of this study was to characterize the expression of NTPDase2 in human nonpathological cyclic and postmenopausic endometria and in adenomyosis. We examined proliferative, secretory, and atrophic endometria from women without endometrial pathology and also adenomyotic lesions. Importantly, we identified NTPDase2 as the first marker of basal endometrium since other stromal cell markers such as CD10 label the entire stroma. As expected, NTPDase2 was also found in adenomyotic stroma, thus becoming a convenient tracer of these lesions. We did not record any changes in the expression levels or the localization of NTPDase2 along the cycle, thus suggesting that the enzyme is not influenced by the female sex hormones like other previously studied ectoenzymes. Remarkably, NTPDase2 was expressed by the Sushi Domain containing 2 (SUSD2)+ endometrial mesenchymal stem cells (eMSCs) found perivascularly, rendering it useful as a cell marker to improve the isolation of eMSCs needed for regenerative medicine therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gargett CE, Schwab KE, Deane JA (2016) Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 22(2):137–163. https://doi.org/10.1093/humupd/dmv051

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen HTP, Xiao L, Deane JA, Tan K, Cousins FL, Masuda H, Sprung CN, Rosamilia A, Gargett CE (2017) N-cadherin identifies human endometrial epithelial progenitor cells by in vitro stem cell assays. Hum Reprod 32(11):2254–2268. https://doi.org/10.1093/humrep/dex289

    Article  CAS  PubMed  Google Scholar 

  3. Valentijn AJ, Palial K, Al-lamee H, Tempest N, Drury J, Von Zglinicki T, Saratzki G, Murray P, Gargett CE, Hapangama DK (2013) SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis. Hum Reprod 28(10):2695–2708. https://doi.org/10.1093/humrep/det285

    Article  CAS  PubMed  Google Scholar 

  4. Schwab KE, Gargett CE (2007) Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod 22(11):2903–2911. https://doi.org/. https://doi.org/10.1093/humrep/dem265

    Article  CAS  Google Scholar 

  5. Masuda H, Anwar SS, Bühring HJ, Rao JR, Gargett CE (2012) A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant 21(10):2201–2214. https://doi.org/10.3727/096368911X637362

    Article  PubMed  Google Scholar 

  6. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo C, Sun B, Zheng B, Zheng L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Bühring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313. https://doi.org/10.1016/j.stem.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  7. Vezzani B, Pierantozzi E, Sorrentino V (2018) Mesenchymal stem cells: from the perivascular environment to clinical applications. Histol Histopathol. https://doi.org/10.14670/HH-11-998

  8. Scarfi S (2014) Purinergic receptors and nucleotide processing ectoenzymes: their roles in regulating mesenchymal stem cell functions. World J Stem Cells 6(2):153–162. https://doi.org/10.4252/wjsc.v6.i2.153

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cavaliere F, Donno C, D’Ambrosi N (2015) Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 9(211). https://doi.org/10.3389/fncel.2015.00211

  10. Coppi E, Pugliese AM, Urbani S, Melani A, Cerbai E, Mazzanti B, Bosi A, Saccardi R, Pedata F (2007) ATP modulates cell proliferation and elicits two different electrophysiological responses in human mesenchymal stem cells. Stem Cells 25(7):1840–1849. https://doi.org/10.1634/stemcells.2006-0669

    Article  CAS  PubMed  Google Scholar 

  11. Ichikawa J, Gemba H (2009) Cell density-dependent changes in intracellular Ca2+ mobilization via the P2Y2 receptor in rat bone marrow stromal cells. J Cell Physiol 219(2):372–381. https://doi.org/. https://doi.org/10.1002/jcp.21680

    Article  CAS  PubMed  Google Scholar 

  12. Katebi M, Soleimani M, Cronstein BN (2009) Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development. J Leukoc Biol 85(3):438–444. https://doi.org/10.1189/jlb.0908520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferrari D, Gulinelli S, Salvestrini V, Lucchetti G, Zini R, Manfredini R, Caione L, Piacibello W, Ciciarello M, Rossi L, Idzki M, Ferrari S, Di Virgilio F, Lemoli RM (2011) Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Exp Hematol 39(3):360–374. https://doi.org/10.1016/j.exphem.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  14. Fruscione F, Scarfi S, Ferraris C, Bruzzone S, Benvenuto F, Guida L, Uccelli A, Salis A, Usai C, Jacchetti E, Ilengo C, Scaglione S, Quarto R, Zocchi E, De Flora A (2011) Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD+ release and P2Y11-mediated signaling. Stem Cells Dev 20(7):1183–1198. https://doi.org/10.1089/scd.2010.0295

    Article  CAS  PubMed  Google Scholar 

  15. Carroll SH, Wigner NA, Kulkarni N, Johnston-Cox H, Gerstenfeld LC, Ravid K (2012) A2B adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. J Biol Chem 287(19):15718–15727. https://doi.org/10.1074/jbc.M112.344994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zippel N, Limbach CA, Ratajski N, Urban C, Luparello C, Pansky A, Kassack MU, Tobiasch E (2012) Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev 21(6):884–900. https://doi.org/10.1089/scd.2010.0576

    Article  CAS  PubMed  Google Scholar 

  17. Sun D, Junger WG, Yuan C, Zhang W, Bao Y, Qin D, Wang C, Tan L, Qi B, Zhu D, Zhang X, Yu T (2013) Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells 31(6):1170–1180. https://doi.org/10.1002/stem

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen M, Su W, Lin X, Guo Z, Wang J, Zhang Q, Bramd D, Ryffel B, Huang J, Liu Z, He X, Le AD, Zheng SG (2013) Adoptive transfer of human gingiva-derived mesenchymal stem cells ameliorates collagen-induced arthritis via suppression of Th1 and Th17 cells and enhancement of regulatory T cell differentiation. Arthritis Rheum 65(5):1181–1193. https://doi.org/10.1002/art.37894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ode A, Schoon J, Kurtz A, Gaetien M, Ode JE, Geissier S, Duda GN (2013) CD73/5′-ecto-nucleotidase acts as a regulatory factor in osteo-/chondrogenic differentiation of mechanically stimulated mesenchymal stromal cells. Eur Cell Mater 25:37–47. https://doi.org/10.22203/eCM.v025a03

    Article  CAS  PubMed  Google Scholar 

  20. Naasani LIS, Rodrigues C, de Campos RP, Beckenkamp LR, Iser IC, Bertoni APS, Wink MR (2017) Extracellular nucleotide hydrolysis in dermal and limbal mesenchymal stem cells: a source of adenosine production. J Cell Biochem 118:2430–2442. https://doi.org/10.1002/jcb.25909

    Article  CAS  PubMed  Google Scholar 

  21. Roszek K, Wujak M (2018) How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. J Cell Physiol. https://doi.org/10.1002/jcp.26904

  22. Zimmerman H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  Google Scholar 

  23. Yegutkin GG (2014) Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 49(6):473–497. https://doi.org/10.3109/10409238.2014.953627

    Article  CAS  PubMed  Google Scholar 

  24. Sévigny J, Sundberg C, Braun N, Guckelberger O, Csizmadia E, Qawi I, Imai M, Simmermann H, Robson SC (2002) Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implication for thromboregulation. Blood 99(8):2801–2809. https://doi.org/10.1182/blood.V99.8.2801

    Article  Google Scholar 

  25. Kishore BK, Isaac J, Fausther M, Tripp SR, Shi H, Gill PS, Braun N, Zimmermann H, Sévigny J, Robson SC (2005) Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am J Physiol Ren Physiol 288(5):F1032–F1043. https://doi.org/10.1152/ajprenal.00108.2004

    Article  CAS  Google Scholar 

  26. Feldbrügge L, Jiang ZG, Csizmadia E, Mitsuhashi S, Tran S, Yee EU, Rothwelier S, Vaid KA, Sévigny J, Schmelzle M, Popov YV, Robson SC (2017) Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 14(1):37–46. https://doi.org/10.1007/s11302-017-9590-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shukla V, Zimmermann H, Wang L, Kettenmann H, Raab S, Hammer K, Sévigny J, Robson SC, Braun N (2005) Functional expression of the ecto-ATPase NTPDase2 and of nucleotide receptors by neuronal progenitor cells in the adult murine hippocampus. J Neurosci Res 80(5):600–610. https://doi.org/10.1002/jnr.20508

    Article  CAS  PubMed  Google Scholar 

  28. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf HW, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: synergism with growth factor-mediated cellular proliferation. Development 133(4):675–684. https://doi.org/10.1242/dev.02233

    Article  CAS  PubMed  Google Scholar 

  29. Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H (2015) NTPDase2 and purinergic signaling control progenitor cell proliferation in neurogenic niches of the adult mouse brain. Stem Cells 33(1):253–264. https://doi.org/10.1002/stem.1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martín-Satué M, Lavoie ÉG, Pelletier J, Fauster M, Csizmadia E, Guckelberger O, Robson SC, Sévigny J (2009) Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem Cell Biol 131:615–628. https://doi.org/10.1007/s00418-008-0551-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, Nishikawa S, Kagami M, Nagashima T, Masuda H, Asada H, Yoshimura Y, Maruyama T (2009) The UDP-glucose receptor P2R14 triggers innate mucosal immunity in the female reproductive tract by inducing IL-8. J Immunol 182(11):7074–7084. https://doi.org/10.4049/jimmunol.0900001

    Article  CAS  PubMed  Google Scholar 

  32. Aliagas E, Vidal E, Torrejón-Escribano B, Taco MR, Ponce J, de Aranda IG, Sévigny J, Condom E, Martín-Satué M (2013) Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signal 9(2):227–237. https://doi.org/10.1007/s11302-012-9345-0

    Article  CAS  PubMed  Google Scholar 

  33. Von Kügelgen I, Hoffmann K (2016) Pharmacology and structure of P2Y receptors. Neuropharmacology 106:50–61. https://doi.org/10.1016/j.neuropharm.2015.10.030

    Article  CAS  Google Scholar 

  34. Wachstein M, Meisel E, Niedzwiedz A (1960) Histochemical demonstration of mitochondrial adenosine triphosphatase with the lead-adenosine triphosphate technique. J Histochem Cytochem 8:387–388. https://doi.org/10.1177/8.5.387

    Article  CAS  PubMed  Google Scholar 

  35. Aliagas E, Vidal A, Teixidó L, Ponce J, Condom E, Martín-Satué M (2014) High expression of ecto-nucleotidases CD39 and CD73 in human endometrial tumors. Mediat Inflamm 2014(509027):1–8. https://doi.org/10.1155/2014/509027

    Article  CAS  Google Scholar 

  36. Villamonte ML, Torrejón-Escribano B, Rodríguez-Martínez A, Trapero C, Vidal A, de Aranda IG, Sévigny J, Matías-Guiu M-SM (2018) Characterization of ecto-nucleotidases in human oviducts with an improved approach simultaneously identifying protein expression and in situ enzyme activity. Histochem Cell Biol 149(3):269–276. https://doi.org/10.1007/s00418-017-1627-8

    Article  CAS  PubMed  Google Scholar 

  37. Burnstock G (2013) Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 10(1):157–187. https://doi.org/10.1007/s11302-013-9399-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cousins FL, O DF, Gargett CE (2018) Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol 50:27–38. https://doi.org/10.1016/j.bpobgyn.2018.01.011

    Article  PubMed  Google Scholar 

  39. Tempest N, Maclean A, Hapangama DK (2018) Endometrial stem cell markers: current concepts and unresolved questions. Int J Mol Sci 19(10):E3240. https://doi.org/10.3390/ijms19103240

    Article  CAS  PubMed  Google Scholar 

  40. Gargett CE (2007) Uterine stem cells: what is the evidence? Hum Reprod Update 13(1):87–101. https://doi.org/10.1093/humupd/dml045

    Article  CAS  PubMed  Google Scholar 

  41. Cervelló I, Mirantes C, Santamaria X, Dolcet X, Matias-Guiu X, Simón C (2011) Stem cells in human endometrium and endometrial carcinoma. Int J Gynecol Pathol 30(4):317–327. https://doi.org/10.1097/PGP.0b013e3182102754

    Article  PubMed  Google Scholar 

  42. Gargett CE, Masuda H (2010) Adult stem cells in the endometrium. Mol Hum Reprod 16(11):818–834. https://doi.org/10.1093/molehr/gaq061

    Article  CAS  PubMed  Google Scholar 

  43. Gotte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schuring AN, Kiesel L (2008) Increased expression of the adult stem cell marker mushashi-1 in endometriosis and endometrial carcinoma. J Pathol 215(3):317–329. https://doi.org/10.1002/path.2364

    Article  CAS  PubMed  Google Scholar 

  44. Chan RW, Gargett CE (2006) Identification of label-retaining cells in mouse endometrium. Stem Cells 24(6):1529–1538. https://doi.org/10.1634/stemcells.2005-0411

    Article  CAS  PubMed  Google Scholar 

  45. Darzi S, Werkmeister JA, Deane JA, Ce G (2016) Identification and characterization of human endometrial mesenchymal stem/stromal cells and their potential for cellular therapy. Stem Cells Transl Med 5(9):1127–1132. https://doi.org/10.5966/sctm.2015-0190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ulrich D, Tan KS, Deane J, Schwab K, Cheong A, Rosamilia A, Gargett CE (2014) Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod 29(9):1895–1905. https://doi.org/10.1093/humrep/deu159

    Article  CAS  PubMed  Google Scholar 

  47. Ciciarello M, Zini R, Rossi L, Salvestrini V, Ferrari D, Manfredini R, Lemoli RM (2013) Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev 22(7):1097–1111. https://doi.org/10.1089/scd.2012.0432

    Article  CAS  PubMed  Google Scholar 

  48. D’Alimonte I, Nargi E, Lannutti A, Marchisio M, Pierdomenico L, Costanzo G, Di Iorio P, Ballerini P, Giuliani F, Ciccarelli R (2013) Adenosine A1 receptor stimulation enhances osteogenic differentiation of human dental pup-derived mesenchymal stem cells via WNT signalling. Stem Cell Res 11(1):611–624. https://doi.org/10.1016/j.scr.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  49. Czarnecka J, Porowińska D, Bajek A, Holysz M, Roszek K (2017) Neurogenic differentiation of mesenchymal stem cells induces alterations in extracellular nucleotides metabolism. J Cell Biochem 118(3):478–486. https://doi.org/10.1002/jcb.25664

    Article  CAS  PubMed  Google Scholar 

  50. Patterson AL, George J, Chatterjee A, Carpenter T, Wolfrum E, Pru JK, Teixeira JM (2018) Label-retaining, putative mesenchymal stem cells contribute to repair of the myometrium during uterine involution. Stem Cells Dev 27:1715–1728. https://doi.org/10.1089/scd.2018.0146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Instituto de Salud Carlos III (FIS PI15/00036), co-funded by FEDER funds/European Regional Development Fund (ERDF)-“a Way to Build Europe”-//FONDOS FEDER “una manera de hacer Europa,” and a grant from the Fundación Merck Salud (Ayuda Merck de Investigación 2016-Fertilidad). ARM was awarded a fellowship from the Asociación Española Contra el Cáncer (AECC). JS received support from the Canadian Institutes of Health Research (CIHR) and was the recipient of a “Chercheur National” research award from the Fonds de recherche du Québec – Santé (FRQS). We thank CERCA Programme (Generalitat de Catalunya) for institutional support. We are grateful to Inmaculada Gómez de Aranda for technical support and to Benjamín Torrejón of Serveis Científics I Tecnològics (Campus Bellvitge, Universitat de Barcelona). The authors thank Tom Yohannan for language editing.

Funding

This study was funded by Instituto de Salud Carlos III (grant number FIS PI15/00036); FEDER funds/European Regional Development Fund (ERDF)-“a Way to Build Europe”; Fundación Merck Salud (Ayuda Merck de Investigación 2016-Fertilidad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Martín-Satué.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments, or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Suppl. Fig. 1

Immunolocalization of NTPDase2 in human proliferative (A), secretory (B), and atrophic (C) endometrium. Stroma is labelled in the three cases although labelling is restricted to basal layer in cyclic endometria (A, B). NTPDase2 antibodies used were ALX-215-045 from Enzo (A, C) and H9s from http://ectonucleotidases-ab.com (B). Scale bars 400 μm (A), 300 μm (B), and 100 μm (C) (PNG 2943 kb)

High Resolution Image (TIF 8501 kb) (PNG 1128 kb)

Suppl. Fig. 2

Confocal fluorescence images of some vessels of human atrophic endometrium labeled with NTPDase2 (A), CD146 (B), and PDGFRβ (C). Merged image shows a more external position of NTPDase2+ cells than CD146- and PDGFRβ-positive cells in the perivascular region (D). NTPDase2 antibody used was H9s from http://ectonucleotidases-ab.com. Scale bar 25 μm (D) (PNG 1128 kb) (JPG 216 kb)

High Resolution Image (TIF 6.40 mb) (PNG 1.10 mb)

Suppl. Fig. 3

Confocal fluorescence images of endometrial blood vessels labeled with PECAM-1 (CD31) and NTPDase1 (CD39). Endothelial cells labelled with CD31 (A, E) are also positive for NTPDase1 (B, F) as shown in merge images (D, H). Scale bars 20 μm (PNG 1.01 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trapero, C., Vidal, A., Rodríguez-Martínez, A. et al. The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signalling 15, 225–236 (2019). https://doi.org/10.1007/s11302-019-09656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09656-3

Keywords

Navigation