Skip to main content

Advertisement

Log in

Altered donor P2X7 activity in human leukocytes correlates with P2RX7 genotype but does not affect the development of graft-versus-host disease in humanised mice

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Graft-versus-host disease (GVHD) is a life-threatening consequence of allogeneic haematopoietic stem cell transplantation, a curative therapy for haematological malignancies. The ATP-gated P2X7 receptor channel is implicated in the development of GVHD. P2X7 activity on human leukocytes can be influenced by gain-of-function (GOF) and loss-of-function (LOF) single nucleotide polymorphisms (SNPs) in the P2RX7 gene. In this study, the P2RX7 gene was sequenced in 25 human donors and the P2X7 activity on subsets of peripheral blood T cells, natural killer (NK) cells and monocytes was measured using an ATP-induced dye uptake assay. GOF and LOF SNPs representing 10 of the 17 known P2RX7 haplotypes were identified, and correlated with P2X7 activity on all leukocyte subsets investigated. Notably, invariant (i) NK T cells displayed the highest P2X7 activity amongst all cell types studied. To determine if donor P2X7 activity influenced the development of GVHD, immunodeficient NOD-SCID-IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells isolated from donors of either GOF (hP2X7GOF mice) or LOF (hP2X7LOF mice) P2RX7 genotype. Both hP2X7GOF and hP2X7LOF mice demonstrated similar human leukocyte engraftment, and showed comparable weight loss, GVHD clinical score and overall survival. Donor P2X7 activity did not affect human leukocyte infiltration or GVHD-mediated tissue damage, or the relative expression of human P2X7 or human interferon-γ (hIFNγ) in tissues. Finally, hP2X7GOF and hP2X7LOF mice demonstrated similar concentrations of serum hIFNγ. This study demonstrates that P2X7 activity correlates with donor P2RX7 genotype on human leukocyte subsets important in GVHD development, but does not affect GVHD development in a humanised mouse model of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Markey KA, MacDonald KP, Hill GR (2014) The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood 124:354–362. https://doi.org/10.1182/blood-2014-02-514745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fowler DH (2006) Shared biology of GVHD and GVT effects: potential methods of separation. Crit Rev Oncol Hematol 57:225–244. https://doi.org/10.1016/j.critrevonc.2005.07.001

    Article  PubMed  Google Scholar 

  3. Hill GR, Crawford JM, Cooke KR, Brinson YS, Pan L, Ferrara JL (1997) Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90:3204–3213

    CAS  PubMed  Google Scholar 

  4. Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS (2011) Effector CD4(+) T cells, the cytokines they generate, and GVHD: something old and something new. Blood 117:3268–3276. https://doi.org/10.1182/blood-2010-12-290403

    Article  PubMed  PubMed Central  Google Scholar 

  5. Storb R, Gyurkocza B, Storer BE, Sorror ML, Blume K, Niederwieser D, Chauncey TR, Pulsipher MA, Petersen FB, Sahebi F, Agura ED, Hari P, Bruno B, McSweeney PA, Maris MB, Maziarz RT, Langston AA, Bethge W, Vindelov L, Franke GN, Laport GG, Yeager AM, Hubel K, Deeg HJ, Georges GE, Flowers ME, Martin PJ, Mielcarek M, Woolfrey AE, Maloney DG, Sandmaier BM (2013) Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J Clin Oncol 31:1530–1538. https://doi.org/10.1200/jco.2012.45.0247

    Article  CAS  PubMed  Google Scholar 

  6. Paczesny S (2013) Discovery and validation of graft-versus-host disease biomarkers. Blood 121:585–594. https://doi.org/10.1182/blood-2012-08-355990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Masetti R, Zama D, Urbini M, Astolfi A, Libri V, Vendemini F, Morello W, Rondelli R, Prete A, Pession A (2015) Impact of inflammatory cytokine gene polymorphisms on developing acute graft-versus-host disease in children undergoing allogeneic hematopoietic stem cell transplantation. J Immunol Res 2015:248264–248265. https://doi.org/10.1155/2015/248264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chien JW, Zhang XC, Fan W, Wang H, Zhao LP, Martin PJ, Storer BE, Boeckh M, Warren EH, Hansen JA (2012) Evaluation of published single nucleotide polymorphisms associated with acute GVHD. Blood 119:5311–5319. https://doi.org/10.1182/blood-2011-09-371153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castillo-Leon E, Dellepiane S, Fiorina P (2018) ATP and T-cell-mediated rejection. Curr Opin Organ Tran 23:34–43. https://doi.org/10.1097/MOT.0000000000000484

    Article  CAS  Google Scholar 

  10. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S (2017) The P2X7 receptor in infection and inflammation. Immunity 47:15–31. https://doi.org/10.1016/j.immuni.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelm K, Ganesan J, Muller T, Durr C, Grimm M, Beilhack A, Krempl CD, Sorichter S, Gerlach UV, Juttner E, Zerweck A, Gartner F, Pellegatti P, Di Virgilio F, Ferrari D, Kambham N, Fisch P, Finke J, Idzko M, Zeiser R (2010) Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med 16:1434–1438. https://doi.org/10.1038/nm.2242

    Article  CAS  PubMed  Google Scholar 

  12. Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V, Hirano Y, Amarnath S, Fowler DH, Radwan M, Young MT, Pittman K, Kubes P, Agarwal HK, Parang KA, Hinton DR, Bastos-Carvalho A, Li S, Yasuma T, Mizutani T, Yasuma R, Wright C, Ambati J (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346:1000–1003. https://doi.org/10.1126/science.1261754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhong X, Zhu F, Qiao J, Zhao K, Zhu S, Zeng L, Chen X, Xu K (2016) The impact of P2X7 receptor antagonist, brilliant blue G on graft-versus-host disease in mice after allogeneic hematopoietic stem cell transplantation. Cell Immunol 310:71–77. https://doi.org/10.1016/j.cellimm.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  14. Geraghty NJ, Belfiore L, Ly D, Adhikary SR, Fuller SJ, Varikatt W, Sanderson-Smith ML, Sluyter V, Alexander SI, Sluyter R, Watson D (2017) The P2X7 receptor antagonist Brilliant Blue G reduces serum human interferon-γ in a humanized mouse model of graft-versus-host disease. Clin Exp Immunol 190:79–95. https://doi.org/10.1111/cei.13005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gu BJ, Zhang WY, Bendall LJ, Chessell IP, Buell GN, Wiley JS (2000) Expression of P2X(7) purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X(7) receptors. Am J Phys Cell Phys 279:C1189–C1197

    Article  CAS  Google Scholar 

  16. Stevenson RO, Taylor RM, Wiley JS, Sluyter R (2009) The P2X(7) receptor mediates the uptake of organic cations in canine erythrocytes and mononuclear leukocytes: comparison to equivalent human cell types. Purinergic Signal 5:385–394. https://doi.org/10.1007/s11302-009-9163-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jursik C, Sluyter R, Georgiou JG, Fuller SJ, Wiley JS, Gu BJ (2007) A quantitative method for routine measurement of cell surface P2X7 receptor function in leucocyte subsets by two-colour time-resolved flow cytometry. J Immunol Methods 325:67–77. https://doi.org/10.1016/j.jim.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Korpi-Steiner NL, Sheerar D, Puffer EB, Urben C, Boyd J, Guadarrama A, Schell K, Denlinger LC (2008) Standardized method to minimize variability in a functional P2X(7) flow cytometric assay for a multi-center clinical trial. Cytom B-Clin Cytom 74:319–329. https://doi.org/10.1002/cyto.b.20421

    Article  CAS  Google Scholar 

  19. Pandolfi JB, Ferraro AA, Sananez I, Gancedo MC, Baz P, Billordo LA, Fainboim L, Arruvito L (2016) ATP-induced inflammation drives tissue-resident Th17 cells in metabolically unhealthy obesity. J Immunol 196:3287–3296. https://doi.org/10.4049/jimmunol.1502506

    Article  CAS  PubMed  Google Scholar 

  20. Kappel LW, Goldberg GL, King CG, Suh DY, Smith OM, Ligh C, Holland AM, Grubin J, Mark NM, Liu C, Iwakura Y, Heller G, van den Brink MR (2009) IL-17 contributes to CD4-mediated graft-versus-host disease. Blood 113:945–952. https://doi.org/10.1182/blood-2008-08-172155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, Del Papa B, Zei T, Ostini RI, Cecchini D, Aloisi T, Perruccio K, Ruggeri L, Balucani C, Pierini A, Sportoletti P, Aristei C, Falini B, Reisner Y, Velardi A, Aversa F, Martelli MF (2011) Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 117:3921–3928. https://doi.org/10.1182/blood-2010-10-311894

    Article  CAS  PubMed  Google Scholar 

  22. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, Koch-Nolte F, Boyer O, Seman M, Adriouch S (2010) Extracellular NAD(+) shapes the Foxp3(+) regulatory T cell compartment through the ART2–P2X7 pathway. J Exp Med 207:2561–2568. https://doi.org/10.1084/jem.20091154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4:ra12. https://doi.org/10.1126/scisignal.2001270

    Article  PubMed  Google Scholar 

  24. Sluyter R (2017) The P2X7 receptor. Adv Exp Med Biol 1051:17–53. https://doi.org/10.1007/5584_2017_59

    Article  PubMed  Google Scholar 

  25. Stokes L, Fuller SJ, Sluyter R, Skarratt KK, Gu BJ, Wiley JS (2010) Two haplotypes of the P2X(7) receptor containing the Ala-348 to Thr polymorphism exhibit a gain-of-function effect and enhanced interleukin-1beta secretion. FASEB J 24:2916–2927. https://doi.org/10.1096/fj.09-150862

    Article  CAS  PubMed  Google Scholar 

  26. Fuller SJ, Stokes L, Skarratt KK, Gu BJ, Wiley JS (2009) Genetics of the P2X7 receptor and human disease. Purinergic Signal 5:257–262. https://doi.org/10.1007/s11302-009-9136-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jørgensen NR, Husted LB, Skarratt KK, Stokes L, Tofteng CL, Kvist T, Jensen J-EB, Eiken P, Brixen K, Fuller S, Clifton-Bligh R, Gartland A, Schwarz P, Langdahl BL, Wiley JS (2012) Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures. Eur J Hum Genet 20:675–681. https://doi.org/10.1038/ejhg.2011.253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oyanguren-Desez O, Rodriguez-Antiguedad A, Villoslada P, Domercq M, Alberdi E, Matute C (2011) Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium 50:468–472. https://doi.org/10.1016/j.ceca.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  29. Al-Shukaili A, Al-Kaabi J, Hassan B, Al-Araimi T, Al-Tobi M, Al-Kindi M, Al-Maniri A, Al-Gheilani A, Al-Ansari A (2011) P2X7 receptor gene polymorphism analysis in rheumatoid arthritis. Int J Immunogenet 38:389–396. https://doi.org/10.1111/j.1744-313X.2011.01019.x

    Article  CAS  PubMed  Google Scholar 

  30. Lee KH, Park SS, Kim I, Kim JH, Ra EK, Yoon SS, Hong YC, Park S, Kim BK (2007) P2X7 receptor polymorphism and clinical outcomes in HLA-matched sibling allogeneic hematopoietic stem cell transplantation. Haematologica 92:651–657

    Article  CAS  PubMed  Google Scholar 

  31. Karaesmen E, Rizvi AA, Preus LM, McCarthy PL, Pasquini MC, Onel K, Zhu X, Spellman S, Haiman CA, Stram DO, Pooler L, Sheng X, Zhu Q, Yan L, Liu Q, Hu Q, Webb A, Brock G, Clay-Gilmour AI, Battaglia S, Tritchler D, Liu S, Hahn T, Sucheston-Campbell LE (2017) Replication and validation of genetic polymorphisms associated with survival after allogeneic blood or marrow transplant. Blood 130:1585–1596. https://doi.org/10.1182/blood-2017-05-784637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spildrejorde M, Bartlett R, Stokes L, Jalilian I, Peranec M, Sluyter V, Curtis BL, Skarratt KK, Skora A, Bakhsh T, Seavers A, McArthur JD, Dowton M, Sluyter R (2014) R270C polymorphism leads to loss of function of the canine P2X7 receptor. Physiol Genomics 46:512–522. https://doi.org/10.1152/physiolgenomics.00195.2013

    Article  CAS  PubMed  Google Scholar 

  33. Gu BJ, Sluyter R, Skarratt KK, Shemon AN, Dao-Ung LP, Fuller SJ, Barden JA, Clarke AL, Petrou S, Wiley JS (2004) An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J Biol Chem 279:31287–31295. https://doi.org/10.1074/jbc.M313902200

    Article  CAS  PubMed  Google Scholar 

  34. Sluyter R, Wiley JS (2014) P2X7 receptor activation induces CD62L shedding from human CD4+ and CD8+ T cells. Inflamm Cell Sig 1:44–49

    Google Scholar 

  35. Hadadi E, Zhang B, Baidžajevas K, Yusof N, Puan KJ, Ong SM, Yeap WH, Rotzschke O, Kiss-Toth E, Wilson H, Wong SC (2016) Differential IL-1β secretion by monocyte subsets is regulated by Hsp27 through modulating mRNA stability. Sci Rep 6:39035. https://doi.org/10.1038/srep39035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cortes-Garcia JD, Lopez-Lopez C, Cortez-Espinosa N, Garcia-Hernandez MH, Guzman-Flores JM, Layseca-Espinosa E, Portales-Cervantes L, Portales-Perez DP (2016) Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets. Immunobiology 221:84–93. https://doi.org/10.1016/j.imbio.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  37. King MA, Covassin L, Brehm MA, Racki W, Pearson T, Leif J, Laning J, Fodor W, Foreman O, Burzenski L, Chase TH, Gott B, Rossini AA, Bortell R, Shultz LD, Greiner DL (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157:104–118. https://doi.org/10.1111/j.1365-2249.2009.03933.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawasaki Y, Sato K, Hayakawa H, Takayama N, Nakano H, Ito R, Mashima K, Oh I, Minakata D, Yamasaki R, Morita K, Ashizawa M, Yamamoto C, Hatano K, Fujiwara SI, Ohmine K, Muroi K, Kanda Y (2018) Comprehensive analysis of the activation and proliferation kinetics and effector functions of human lymphocytes, and antigen presentation capacity of antigen-presenting cells in xenogeneic graft-versus-host disease. Biol Blood Marrow Transplant 24:1563–1574. https://doi.org/10.1016/j.bbmt.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  39. Ruggeri L, Di Ianni M, Urbani E, Mancusi A, Falzetti F, Carotti A, Terenzi A, Massei MS, Amico L, Zei T, Iacucci R, Martelli MF, Velardi A (2014) Tregs suppress GvHD at the periphery and unleash the Gvl effect in the bone marrow. Blood 124:842

    Article  Google Scholar 

  40. Bhattacharya A, Wang Q, Ao H, Shoblock JR, Lord B, Aluisio L, Fraser I, Nepomuceno D, Neff RA, Welty N, Lovenberg TW, Bonaventure P, Wickenden AD, Letavic MA (2013) Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br J Pharmacol 170:624–640. https://doi.org/10.1111/bph.12314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woehrle T, Yip L, Elkhal A, Sumi Y, Chen Y, Yao Y, Insel PA, Junger WG (2010) Pannexin-1 hemichannel-mediated ATP release together with P2X1 and P2X4 receptors regulate T-cell activation at the immune synapse. Blood 116:3475–3484. https://doi.org/10.1182/blood-2010-04-277707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ledderose C, Liu K, Kondo Y, Slubowski CJ, Dertnig T, Denicolo S, Arbab M, Hubner J, Konrad K, Fakhari M, Lederer JA, Robson SC, Visner GA, Junger WG (2018) Purinergic P2X4 receptors and mitochondrial ATP production regulate T cell migration. J Clin Invest 128:3583–3594. https://doi.org/10.1172/jci120972

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shemon AN, Sluyter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrou S, Wiley JS (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281:2079–2086. https://doi.org/10.1074/jbc.M507816200

    Article  CAS  PubMed  Google Scholar 

  44. Geraghty NJ, Belfiore L, Adhikary SR, Alexander SI, Sluyter R, Watson D (2019) Increased splenic human CD4(+):CD8(+) T cell ratios, serum human interferon-gamma and intestinal human interleukin-17 are associated with clinical graft-versus-host disease in humanized mice. Transpl Immunol https://doi.org/10.1016/j.trim.2019.02.003

  45. Koldej R, Perera T, Ritchie DS (2018) Polymorphisms in donor and recipient p2x7 receptor predict patient outcome in allogeneic stem cell transplantation. Biol Blood Marrow Transplant 24:S42. https://doi.org/10.1016/j.bbmt.2017.12.596

    Article  Google Scholar 

  46. Abraham S, Choi J-G, Ye C, Manjunath N, Shankar P (2015) IL-10 exacerbates xenogeneic GVHD by inducing massive human T cell expansion. Clin Immunol 156:58–64. https://doi.org/10.1016/j.clim.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  47. Covassin L, Jangalwe S, Jouvet N, Laning J, Burzenski L, Shultz LD, Brehm MA (2013) Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rgamma(null) (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells. Clin Exp Immunol 174:372–388. https://doi.org/10.1111/cei.12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hannon M, Lechanteur C, Lucas S, Somja J, Seidel L, Belle L, Bruck F, Baudoux E, Giet O, Chantillon AM, Delvenne P, Drion P, Beguin Y, Humblet-Baron S, Baron F (2014) Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion 54:353–363. https://doi.org/10.1111/trf.12279

    Article  CAS  PubMed  Google Scholar 

  49. Rezvani K, Mielke S, Ahmadzadeh M, Kilical Y, Savani BN, Zeilah J, Keyvanfar K, Montero A, Hensel N, Kurlander R, Barrett AJ (2006) High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood 108:1291–1297. https://doi.org/10.1182/blood-2006-02-003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kennedy-Nasser AA, Ku S, Castillo-Caro P, Hazrat Y, Wu MF, Liu H, Melenhorst J, Barrett AJ, Ito S, Foster A, Savoldo B, Yvon E, Carrum G, Ramos CA, Krance RA, Leung K, Heslop HE, Brenner MK, Bollard CM (2014) Ultra low-dose IL-2 for GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation mediates expansion of regulatory T cells without diminishing antiviral and antileukemic activity. Clin Cancer Res 20:2215–2225. https://doi.org/10.1158/1078-0432.ccr-13-3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trabanelli S, Ocadlikova D, Gulinelli S, Curti A, Salvestrini V, Vieira RP, Idzko M, Di Virgilio F, Ferrari D, Lemoli RM (2012) Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J Immunol 189:1303–1310. https://doi.org/10.4049/jimmunol.1103800

    Article  CAS  PubMed  Google Scholar 

  52. Yi T, Chen Y, Wang L, Du G, Huang D, Zhao D, Johnston H, Young J, Todorov I, Umetsu DT, Chen L, Iwakura Y, Kandeel F, Forman S, Zeng D (2009) Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2, and Th17 cells in graft-versus-host disease. Blood 114:3101–3112. https://doi.org/10.1182/blood-2009-05-219402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gu BJ, Huang X, Ou A, Rembach A, Fowler C, Avula PK, Horton A, Doecke JD, Villemagne VL, Macaulay SL, Maruff P, Fletcher EL, Guymer R, Wiley JS, Masters CL (2016) Innate phagocytosis by peripheral blood monocytes is altered in Alzheimer’s disease. Acta Neuropathol 132:377–389. https://doi.org/10.1007/s00401-016-1596-3

    Article  CAS  PubMed  Google Scholar 

  54. Amores-Iniesta J, Barberà-Cremades M, Martínez CM, Pons JA, Revilla-Nuin B, Martínez-Alarcón L, Di Virgilio F, Parrilla P, Baroja-Mazo A, Pelegrín P (2017) Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep 21:3414–3426. https://doi.org/10.1016/j.celrep.2017.11.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gu BJ, Zhang W, Worthington RA, Sluyter R, Dao-Ung P, Petrou S, Barden JA, Wiley JS (2001) A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J Biol Chem 276:11135–11142. https://doi.org/10.1074/jbc.M010353200

    Article  CAS  PubMed  Google Scholar 

  56. Wiley JS, Dao-Ung LP, Li C, Shemon AN, Gu BJ, Smart ML, Fuller SJ, Barden JA, Petrou S, Sluyter R (2003) An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem 278:17108–17113. https://doi.org/10.1074/jbc.M212759200

    Article  CAS  PubMed  Google Scholar 

  57. Di Virgilio F, Schmalzing G, Markwardt F (2018) The elusive P2X7 macropore. Trends Cell Biol 28:392–404. https://doi.org/10.1016/j.tcb.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  58. Cankurtaran-Sayar S, Sayar K, Ugur M (2009) P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells. Mol Pharmacol 76:1323–1332. https://doi.org/10.1124/mol.109.059923

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all blood donors who contributed to this study, Margaret Phillips (University of Wollongong) for sequencing DNA, Sandra Burrell for assistance with DNA sequencing, the technical staff of the Illawarra Health and Medical Research Institute (Wollongong, Australia) and the animal staff of the University of Wollongong Faculty of Science, Medicine and Health (University of Wollongong) for technical support.

Funding

This project was funded by the Faculty of Science, Medicine and Health, University of Wollongong. SR Adhikary, NJ Geraghty and P Cuthbertson are supported through Australian Government Research Training Program Scholarships. D Watson is supported by AMP’s Tomorrow Fund. D Watson and R Sluyter receive additional support from Molecular Horizons (University of Wollongong).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sluyter or D. Watson.

Ethics declarations

Conflict of interest

Sam R Adhikary declares that he has no conflict of interest.

Nicholas J Geraghty declares that he has no conflict of interest.

Peter Cuthbertson declares that he has no conflict of interest.

Ronald Sluyter declares that he has no conflict of interest.

Debbie Watson declares that she has no conflict of interest.

Ethical approval

All animal experiments were approved under protocol AE16/03 by the University of Wollongong Animal Ethics Committee. All human experiments were approved under protocol HE12/290 by the University of Wollongong Human Ethics Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikary, S.R., Geraghty, N.J., Cuthbertson, P. et al. Altered donor P2X7 activity in human leukocytes correlates with P2RX7 genotype but does not affect the development of graft-versus-host disease in humanised mice. Purinergic Signalling 15, 177–192 (2019). https://doi.org/10.1007/s11302-019-09651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09651-8

Keywords

Navigation