Skip to main content
Log in

A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 μM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20–30%, respectively. In the phenol animal model, 1A (100 μM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IOP:

Intraocular pressure

MTT:

[3-(4, 5-dimethyl-thiazol-2-yl) 2,5-diphenyl-tetrazolium bromide]

UDP:

Uridine 5′-diphosphate

hP2Y6-R:

Human P2Y6 receptor

References

  1. Jacobson KA, Civan MM (2016) Ocular purine receptors as drug targets in the eye. J Ocul Pharmacol Ther 32(8):534–547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Guzmán-Aranguez A, Crooke A, Peral A, Hoyle CH, Pintor J (2007) Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog Retin Eye Res 26(6):674–687

    Article  PubMed  CAS  Google Scholar 

  3. Pintor J (2005) Adenine nucleotides and dinucleotides as new substances for the treatment of ocular hypertension and glaucoma. Curr Opin Investig Drugs 6(1):76–80

    PubMed  CAS  Google Scholar 

  4. Crooke A, Guzman-Aranguez A, Carracedo G, de Lara MJP, Pintor J (2017) Understanding the presence and roles of Ap4A (Diadenosine tetraphosphate) in the eye. J Ocul Pharmacol Ther 33(6):426–434

    Article  PubMed  CAS  Google Scholar 

  5. Pintor J, Peláez T, Peral A (2004) Adenosine tetraphosphate, Ap4, a physiological regulator of intraocular pressure in normotensive rabbit eyes. J Pharmacol Exp Ther 308(2):468–473

    Article  PubMed  CAS  Google Scholar 

  6. Pintor J, Peral A, Peláez T, Martı́n S, Hoyle CH (2003) Presence of diadenosine polyphosphates in the aqueous humor: their effect on intraocular pressure. J Pharmacol Exp Ther 304(1):342–348

    Article  PubMed  CAS  Google Scholar 

  7. Soto D, Pintor J, Peral A, Gual A, Gasull X (2005) Effects of dinucleoside polyphosphates on trabecular meshwork cells and aqueous humor outflow facility. J Pharmacol Exp Ther 314(3):1042–1051

    Article  PubMed  CAS  Google Scholar 

  8. El-Tayeb A, Qi A, Müller CE (2006) Synthesis and structure− activity relationships of uracil nucleotide derivatives and analogues as agonists at human P2Y2, P2Y4, and P2Y6 receptors. J Med Chem 49(24):7076–7087

    Article  PubMed  CAS  Google Scholar 

  9. Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T, Koizumi S (2017) Purinergic dysregulation causes hypertensive glaucoma–like optic neuropathy. JCI insight 2(19)

  10. Markovskaya A, Crooke A, Guzmán-Aranguez AI, Peral A, Ziganshin AU, Pintor J (2008) Hypotensive effect of UDP on intraocular pressure in rabbits. Eur J Pharmacol 579(1):93–97

    Article  PubMed  CAS  Google Scholar 

  11. Ginsburg-Shmuel T, Haas M, Grbic D, Arguin G, Nadel Y, Gendron F-P, Reiser G, Fischer B (2012) UDP made a highly promising stable, potent, and selective P2Y6-receptor agonist upon introduction of a boranophosphate moiety. Bioorg Med Chem 20(18):5483–5495

    Article  PubMed  CAS  Google Scholar 

  12. Major DT, Fischer B (2004) Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the h-P2Y1-receptor. J Med Chem 47(18):4391–4404

    Article  PubMed  CAS  Google Scholar 

  13. Ecke D, Tulapurkar M, Nahum V, Fischer B, Reiser G (2006) Opposite diastereoselective activation of P2Y1 and P2Y11 nucleotide receptors by adenosine 5′-O-(α-boranotriphosphate) analogues. Br J Pharmacol 149(4):416–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kivalo M, Hollmen T, Sukura A, Mononen T (1997) The effect of intraoperative injection of hyaluronan under a one-piece glaucoma filtration implant in the rabbit eye. Acta Vet Scand 38(3):235–242

    PubMed  CAS  Google Scholar 

  15. Monem AS, Ali FM, Ismail MW (2000) Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm 198(1):29–38

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, Zhang K, Gao Z-G, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509(7498):119–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang D, Gao ZG, Zhang K, Kiselev E, Crane S, Wang J, Paoletta S, Yi C, Ma L, Zhang W, Han GW, Liu H, Cherezov V, Katritch V, Jiang H, Stevens RC, Jacobson KA, Zhao Q, Wu B (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520(7547):317–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang L, Liu J, Fang X, Nie G (2014) Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European J Mechanics-A/Solids 46:22–29

    Article  Google Scholar 

  19. Wang Q, He J, Wu D, Wang J, Yan J, Li H (2015) Interaction of α-cyperone with human serum albumin: determination of the binding site by using discovery studio and via spectroscopic methods. J Lumin 164:81–85

    Article  CAS  Google Scholar 

  20. Šali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  PubMed  Google Scholar 

  21. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  PubMed  CAS  Google Scholar 

  22. Papadatos G, Overington JP (2014) The ChEMBL database: a taster for medicinal chemists. Future 6(4):361–364

    CAS  Google Scholar 

  23. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—A CHARMm-based MD docking algorithm. J Comput Chem 24(13):1549–1562

    Article  PubMed  CAS  Google Scholar 

  24. Tjong Kim Sang EF, De Meulder F Introduction to the CoNLL-2003 shared task: language-independent named entity recognition. In: Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4, 2003. Association for Computational Linguistics, pp 142–147

  25. Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988

    Article  CAS  Google Scholar 

  27. Ding Z, Tuluc F, Bandivadekar KR, Zhang L, Jin J, Kunapuli SP (2005) Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol Cell Physiol 288:C559–C567

    Article  PubMed  CAS  Google Scholar 

  28. Hoffmann C, Moro S, Nicholas RA, Harden TK, Jacobson KA (1999) The role of amino acids in extracellular loops of the human P2Y1 receptor in surface expression and activation processes. J Biol Chem 274:14639–14647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jiang Q, Guo D, Lee BX, Van Rhee AM, Kim YC, Nicholas RA, Schachter JB, Harden TK, Jacobson KA (1997) A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol 52:499–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Moro S, Guo D, Camaioni E, Boyer JL, Harden TK, Jacobson KA (1998) Human P2Y1 receptor: molecular modeling and site-directed mutagenesis as tools to identify agonist and antagonist recognition sites. J Med Chem 41:1456–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Costanzi S, Joshi BV, Maddileti S, Mamedova L, Gonzalez-Moa MJ, Marquez VE, Harden TK, Jacobson KA (2005) Human P2Y6 receptor: molecular modeling leads to the rational design of a novel agonist based on a unique conformational preference. J Med Chem 48(26):8108–8111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Moro S, Jacobson KA (2002) Molecular modeling as a tool to investigate molecular recognition in P2Y receptors. Curr Pharm Des 8:2401–2413

    Article  PubMed  CAS  Google Scholar 

  33. Costanzi S, Mamedova L, Gao ZG, Jacobson KA (2004) Architecture of P2Y nucleotide receptors: structural comparison based on sequence analysis, mutagenesis, and homology modeling. J Med Chem 47:5393–5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hillmann P, Ko G-Y, Spinrath A, Raulf A, von Kügelgen I, Wolff SC, Nicholas RA, Kostenis E, Höltje H-D, Müller CE (2009) Key determinants of nucleotide-activated G protein-coupled P2Y2 receptor function revealed by chemical and pharmacological experiments, mutagenesis and homology modeling. J Med Chem 52(9):2762–2775

    Article  PubMed  CAS  Google Scholar 

  35. Major DT, Fischer B (2004) Molecular recognition in purinergic receptors. 1. A comprehensive computational study of the h-P2Y1-receptor. J Med Chem 47:4391–4404

    Article  PubMed  CAS  Google Scholar 

  36. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  CAS  Google Scholar 

  37. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15

    Article  PubMed  CAS  Google Scholar 

  38. Azran S, Danino O, Förster D, Kenigsberg S, Reiser G, Dixit M, Singh V, Major DT, Fischer B (2015) Identification of highly promising antioxidants/neuroprotectants based on nucleoside 5′-phosphorothioate scaffold. Synthesis, activity, and mechanisms of action. J Med Chem 58(21):8427–8443

    Article  PubMed  CAS  Google Scholar 

  39. Davson H (1993) The aqueous humour and the intraocular pressure, physiology of the eye. 5th Edn. Pergamon Press, New York

  40. Gupta S, Galpalli Niranjan D, Agrawal S, Srivastava S, Saxena R (2008) Recent advances in pharmacotherapy of glaucoma. Indian J Pharmacology 40(5):197–208

    Article  CAS  Google Scholar 

  41. Higginbotham EJ, Schuman JS, Goldberg I, Gross RL, VanDenburgh AM, Chen K, Whitcup SM (2002) One-year, randomized study comparing bimatoprost and timolol in glaucoma and ocular hypertension. Arch Ophthalmol 120(10):1286–1293

    Article  PubMed  CAS  Google Scholar 

  42. Kaiserman I, Fendyur A, Vinker S (2009) Topical beta blockers in asthmatic patients–is it safe? Curr Eye Res 34(7):517–522

    Article  PubMed  CAS  Google Scholar 

  43. Frishman WH, Fuksbrumer MS, Tannenbaum M (1994) Topical ophthalmic β-adrenergic blockade for the treatment of glaucoma and ocular hypertension. J Clin Pharmacol 34(8):795–803

    Article  PubMed  CAS  Google Scholar 

  44. Brubaker R (1991) Flow of aqueous humor in humans [the Friedenwald lecture]. Invest Ophthalmol Vis Sci 32(13):3145–3166

    PubMed  CAS  Google Scholar 

  45. Tan AY, LeVatte TL, Archibald ML, Tremblay F, Kelly ME, Chauhan BC (2002) Timolol concentrations in rat ocular tissues and plasma after topical and intraperitoneal dosing. J Glaucoma 11(2):134–142

    Article  PubMed  Google Scholar 

  46. Hoyng PF, van Beek LM (2000) Pharmacological therapy for glaucoma. Drugs 59(3):411–434

    Article  PubMed  CAS  Google Scholar 

  47. Leuppi JD, Schnyder P, Hartmann K, Reinhart WH, Kuhn M (2001) Drug-induced bronchospasm: analysis of 187 spontaneously reported cases. Respiration 68(4):345–351

    Article  PubMed  CAS  Google Scholar 

  48. Kirwan JF, Nightingale JA, Bunce C, Wormald R (2002) β blockers for glaucoma and excess risk of airways obstruction: population based cohort study. BMJ 325(7377):1396–1397

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carstairs J, Nimmo A, Barnes PJ (1985) Autoradiographic visualization of beta-adrenoceptor subtypes in human lung 1–3. Am Rev Respir Dis 132 (3):541–547

  50. McMahon CD, Shaffer RN, Hoskins HD, Hetherington J (1979) Adverse effects experienced by patients taking timolol. Am J Ophthalmol 88(4):736–738

    Article  PubMed  CAS  Google Scholar 

  51. van Buskirk EM (1980) Adverse reactions from timolol administration. Ophthalmology 87(5):447–450

    Article  PubMed  Google Scholar 

  52. Fraunfelder FT (1979) Interim report: national registry of possible drug-induced ocular side effects. Ophthalmology 86(1):126–130

    Article  PubMed  CAS  Google Scholar 

  53. Dickstein K, AARSLAND T (1996) Comparison of the effects of aqueous and gellan ophthalmic timolol on peak exercise performance in middle-aged men. Am J Ophthalmol 121(4):367–371

    Article  PubMed  CAS  Google Scholar 

  54. Shaivitz SA (1979) Timolol and myasthenia gravis. JAMA 242(15):1611–1612

    Article  PubMed  CAS  Google Scholar 

  55. Coppeto JR (1984) Timolol-associated myasthenia gravis. Am J Ophthalmol 98(2):244–245

    Article  PubMed  CAS  Google Scholar 

  56. Velde TM, Kaiser FE (1983) Ophthalmic timolol treatment causing altered hypoglycemic response in a diabetic patient. Arch Intern Med 143(8):1627–1627

    Article  PubMed  CAS  Google Scholar 

  57. Zhang P, Yang X, Zhong Y (2012) Cellular localization of P2Y6 receptor in rat retina. Neuroscience 220:62–69

    Article  PubMed  CAS  Google Scholar 

  58. Fries JE, Wheeler-Schilling TH, Kohler K, Guenther E (2004) Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study. Mol Brain Res 130(1–2):1–6

    Article  PubMed  CAS  Google Scholar 

  59. Taguchi M, Shinozaki Y, Kashiwagi K, Shigetomi E, Robaye B, Koizumi S (2016) Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y6 receptor signals. J Neurochem 136(4):741–751

    Article  PubMed  CAS  Google Scholar 

  60. Haas M, Ginsburg-Shmuel T, Fischer B, Reiser G (2014) 5-OMe-uridine-5′-O-(α-boranodiphosphate), a novel nucleotide derivative highly active at the human P2Y 6 receptor protects against death-receptor mediated glial apoptosis. Neurosci Lett 578:80–84

    Article  PubMed  CAS  Google Scholar 

  61. von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110(3):415–432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Office of the Israeli Chief Scientist, and Youdim Pharmaceuticals Ltd. Israel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan T. Major, Orly Weinreb or Bilha Fischer.

Ethics declarations

Conflict of interest

Authors Orly Weinreb and Tali Fishman-Jacob received research grants from the Office of the Israeli Chief Scientist, and Youdim Pharmaceuticals Ltd. Israel.

Ethical approval

This study does not contain any studies with human participants.

Additional information

₤ Patent—US Application No. 61/344,972 of 01/12/2010 and US Application No. 61/467,108 of 24/03/2011 International Filing: e:01/12/2011

Electronic supplementary material

ESM 1

Supporting Information includes: Homology modeling description; binding-site description and ligand recognition mode; binding interactions of hP2Y6-R and agonists; uracil moiety binding mode; and binding modes of 5-OMe-UDP(α-B) diastereoisomers. 3 Tables and 11 Figures are submitted as part of the Supporting Information. (DOCX 31124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, T.F., Singh, V., Dixit, M. et al. A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist. Purinergic Signalling 14, 271–284 (2018). https://doi.org/10.1007/s11302-018-9614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-018-9614-7

Keywords

Navigation