Skip to main content

A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro

Abstract

Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Boda E, Buffo A (2010) Glial cells in non-germinal territories: insights into their stem/progenitor properties in the intact and injured nervous tissue. Arch Ital Biol 148:119–136

    CAS  PubMed  Google Scholar 

  2. Ming G, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. doi:10.1016/j.neuron.2011.05.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T, Gotz M (2008) Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci 105:3581–3586. doi:10.1073/pnas.0709002105

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22. doi:10.1038/nrn2495

    CAS  Article  PubMed  Google Scholar 

  5. Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63:1429–1451. doi:10.1002/glia.22859

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Dev Cambridge Engl 135:145–157. doi:10.1242/dev.004895

    CAS  Google Scholar 

  7. Kondo T, Raff M (2000) Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289:1754–1757. doi:10.1126/science.289.5485.1754

    CAS  Article  PubMed  Google Scholar 

  8. Kondo T, Raff M (2000) Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Dev Cambridge Engl 127:2989–2998

    CAS  Google Scholar 

  9. Kondo T, Raff M (2004) Chromatin remodelling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells. Genes Dev 18:2963–2972. doi:10.1101/gad.309404

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Honsa P, Pivonkova H, Dzamba D, Filipova M, Anderova M (2012) Polydendrocytes display large lineage plasticity following focal cerebral ischemia. PLoS One 7, e36816. doi:10.1371/journal.pone.0036816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401. doi:10.1038/nn.2220

    CAS  Article  PubMed  Google Scholar 

  12. Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D (2010) Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex. J Neurosci 30:12036–12049. doi:10.1523/JNEUROSCI.1360-10.2010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–681. doi:10.1016/j.neuron.2010.09.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442. doi:10.1523/JNEUROSCI.2831-08.2008

    CAS  Article  PubMed  Google Scholar 

  15. Huang W, Zhao N, Bai X, Karram K, Trotter J, Goebbels S, Scheller A, Kirchhoff F (2014) Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development. Glia 62:896–913. doi:10.1002/glia.22648

    Article  PubMed  Google Scholar 

  16. Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D, Ferrario S, Parravicini C, Capra V, Gelosa P, Guerrini U, Belcredito S, Cimino M, Sironi L, Tremoli E, Rovati GE, Martini C, Abbracchio MP (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25:4615–4627. doi:10.1038/sj.emboj.7601341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Maisel M, Herr A, Milosevic J, Hermann A, Habisch HJ, Schwarz S, Kirsch M, Antoniadis G, Brenner R, Hallmeyer-Elgner S, Lerche H, Schwarz J, Storch A (2007) Transcription profiling of adult and fetal human neuroprogenitors identifies divergent paths to maintain the neuroprogenitor cell state. Stem Cells 25:1231–1240. doi:10.1634/stemcells.2006-0617

    CAS  Article  PubMed  Google Scholar 

  18. Chen Y, Wu H, Wang S, Koito H, Li J, Ye F, Hoang J, Escobar SS, Gow A, Arnett HA, Trapp BD, Karandikar NJ, Hsieh J, Lu QR (2009) The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination. Nat Neurosci 12:1398–1406. doi:10.1038/nn.2410

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Boda E, Viganò F, Rosa P, Fumagalli M, Labat-Gest V, Tempia F, Abbracchio MP, Dimou L, Buffo A (2011) The GPR17 receptor in NG2 expressing cells: focus on in vivo cell maturation and participation in acute trauma and chronic damage. Glia 59:1958–1973. doi:10.1002/glia.21237

    Article  PubMed  Google Scholar 

  20. Ceruti S, Viganò F, Boda E, Ferrario S, Magni G, Boccazzi M, Rosa P, Buffo A, Abbracchio MP (2011) Expression of the new P2Y-like receptor GPR17 during oligodendrocyte precursor cell maturation regulates sensitivity to ATP-induced death. Glia 59:363–378. doi:10.1002/glia.21107

    Article  PubMed  Google Scholar 

  21. Fumagalli M, Daniele S, Lecca D, Lee PR, Parravicini C, Fields RD, Rosa P, Antonucci F, Verderio C, Trincavelli ML, Bramanti P, Martini C, Abbracchio MP (2011) Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation. J Biol Chem 286:10593–10604. doi:10.1074/jbc.M110.162867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Fumagalli M, Bonfanti E, Daniele S, Zappelli E, Lecca D, Martini C, Trincavelli ML, Abbracchio MP (2015) The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization. Glia 63:2327–2339. doi:10.1002/glia.22896

    Article  PubMed  Google Scholar 

  23. Lecca D, Trincavelli ML, Gelosa P, Sironi L, Ciana P, Fumagalli M, Villa G, Verderio C, Grumelli C, Guerrini U, Tremoli E, Rosa P, Cuboni S, Martini C, Buffo A, Cimino M, Abbracchio MP (2008) The recently identified P2Y-like receptor GPR17 is a sensor of brain damage and a new target for brain repair. PLoS One 3, e3579. doi:10.1371/journal.pone.0003579

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ceruti S, Villa G, Genovese T, Mazzon E, Longhi R, Rosa P, Bramanti P, Cuzzocrea S, Abbracchio MP (2009) The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury. Brain 132:2206–2218. doi:10.1093/brain/awp147

    Article  PubMed  Google Scholar 

  25. Marschallinger J, Schäffner I, Klein B, Gelfert R, Rivera FJ, Illes S, Grassner L, Janssen M, Rotheneichner P, Schmuckermair C, Coras R, Boccazzi M, Chishty M, Lagler FB, Renic M, Bauer H, Singewald N, Blümcke I, Bogdahn U, Couillard-Despres S, Lie DC, Abbracchio MP, Aigner L (2015) Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 6:8466. doi:10.1038/ncomms9466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci 101:16659–16664. doi:10.1073/pnas.0407643101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Liu A, Han YR, Li J, Sun D, Ouyang M, Plummer MR, Casaccia-Bonnefil P (2007) The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J Neurosci 27:7339–7343. doi:10.1523/JNEUROSCI.1226-07.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589. doi:10.1083/jcb.200412101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Mayer-Pröschel M (2001) Isolation and generation of oligodendrocytes by immunopanning. In: Curr. Protoc. Neurosci. Wiley, Hoboken, p Unit 3.13

    Google Scholar 

  30. Bartlett PF, Noble MD, Pruss RM, Raff MC, Rattray S, Williams CA (1981) Rat neural antigen-2 (RAN-2): a cell surface antigen on astrocytes, ependymal cells, Müller cells and lepto-meninges defined by a monoclonal antibody. Brain Res 204:339–351

    CAS  Article  PubMed  Google Scholar 

  31. Benned-Jensen T, Rosenkilde MM (2010) Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants. Br J Pharmacol 159:1092–1105. doi:10.1111/j.1476-5381.2009.00633.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Buccioni M, Marucci G, Dal Ben D, Giacobbe D, Lambertucci C, Soverchia L, Thomas A, Volpini R, Cristalli G (2011) Innovative functional cAMP assay for studying G protein-coupled receptors: application to the pharmacological characterization of GPR17. Purinergic Signal 7:463–468. doi:10.1007/s11302-011-9245-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Li WJ, Mao FX, Chen HJ, Qian LH, Buzby JS (2015) Treatment with UDP-glucose, GDNF, and memantine promotes SVZ and white matter self-repair by endogenous glial progenitor cells in neonatal rats with ischemic PVL. Neuroscience 284:444–458. doi:10.1016/j.neuroscience.2014.10.012

    CAS  Article  PubMed  Google Scholar 

  34. Dougherty JD, Fomchenko EI, Akuffo AA, Schmidt E, Helmy KY, Bazzoli E, Brennan CW, Holland EC, Milosevic A (2012) Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma. Cancer Res 72:4856–4868. doi:10.1158/0008-5472.CAN-11-2632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Bianco F, Fumagalli M, Pravettoni E, D’Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Rev 48:144–156. doi:10.1016/j.brainresrev.2004.12.004

    CAS  Article  PubMed  Google Scholar 

  36. Fratangeli A, Parmigiani E, Fumagalli M, Lecca D, Benfante R, Passafaro M, Buffo A, Abbracchio MP, Rosa P (2013) The regulated expression, intracellular trafficking, and membrane recycling of the P2Y-like receptor GPR17 in Oli-neu oligodendroglial cells. J Biol Chem 288:5241–5256. doi:10.1074/jbc.M112.404996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Belachew S (2003) Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. J Cell Biol 161:169–186. doi:10.1083/jcb.200210110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Dawson MR, Levine JM, Reynolds R (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? J Neurosci Res 61:471–479

    CAS  Article  PubMed  Google Scholar 

  39. Moyon S, Dubessy AL, Aigrot MS, Trotter M, Huang JK, Dauphinot L, Potier MC, Kerninon C, Melik Parsadaniantz S, Franklin RJ, Lubetzki C (2015) Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci 35:4–20. doi:10.1523/JNEUROSCI.0849-14.2015

    Article  PubMed  Google Scholar 

  40. Liu J, Casaccia-Bonnefil P (2010) Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 33:193–201. doi:10.1016/j.tins.2010.01.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Monti B, Polazzi E, Contestabile A (2009) Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol 2:95–109

    CAS  Article  PubMed  Google Scholar 

  42. Crèvecœur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, Deprez M, Rogister B (2013) Expression of SV2 isoforms during rodent brain development. BMC Neurosci 14:87. doi:10.1186/1471-2202-14-87

    Article  PubMed  PubMed Central  Google Scholar 

  43. Portela-Gomes GM, Lukinius A, Grimelius L (2000) Synaptic vesicle protein 2, a new neuroendocrine cell marker. Am J Pathol 157:1299–1309. doi:10.1016/S0002-9440(10)64645-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Ren H, Orozco IJ, Su Y, Suyama S, Gutiérrez-Juárez R, Horvath TL, Wardlaw SL, Plum L, Arancio O, Accili D (2012) FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149:1314–1326. doi:10.1016/j.cell.2012.04.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Wu JB, Shih JC (2011) Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation. Mol Pharmacol 80:714–723. doi:10.1124/mol.111.072744

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Daniele S, Lecca D, Trincavelli ML, Ciampi O, Abbracchio MP, Martini C (2010) Regulation of PC12 cell survival and differentiation by the new P2Y-like receptor GPR17. Cell Signal 22:697–706. doi:10.1016/j.cellsig.2009.12.006

    CAS  Article  PubMed  Google Scholar 

  47. Löscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694

    Article  PubMed  Google Scholar 

  48. Hering R, Kuritzky A (1989) Sodium valproate in the treatment of cluster headache: an open clinical trial. Cephalalgia 9:195–198

    CAS  Article  PubMed  Google Scholar 

  49. Pope HG, McElroy SL, Keck PE, Hudson JI (1991) Valproate in the treatment of acute mania. A placebo-controlled study. Arch Gen Psychiatry 48:62–68

    Article  PubMed  Google Scholar 

  50. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    CAS  Article  PubMed  Google Scholar 

  51. Neary JT, Zimmermann H (2009) Trophic functions of nucleotides in the central nervous system. Trends Neurosci 32:189–198. doi:10.1016/j.tins.2009.01.002

    CAS  Article  PubMed  Google Scholar 

  52. Ulrich H, Abbracchio MP, Burnstock G (2012) Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Rev 8:755–767. doi:10.1007/s12015-012-9372-9

    CAS  Article  PubMed  Google Scholar 

  53. Cavaliere F, Donno C, D’Ambrosi N (2015) Purinergic signaling: a common pathway for neural and mesenchymal stem cell maintenance and differentiation. Front Cell Neurosci 9:211. doi:10.3389/fncel.2015.00211

    Article  PubMed  PubMed Central  Google Scholar 

  54. Boccazzi M, Rolando C, Abbracchio MP, Buffo A, Ceruti S (2014) Purines regulate adult brain subventricular zone cell functions: contribution of reactive astrocytes. Glia 62:428–439. doi:10.1002/glia.22614

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Cangrelor was a kind gift of The Medicine Company, Parsippanny, USA. Anti-SV2 and anti-Syt primary antibodies were a kind gift of Dr. C. Verderio (National Research Council, CNR, Milan). Anti-Ran2 antibody was a kind gift of Prof. Carla Taveggia (Axo-Glia Unit, Institute of Experimental Neurology Division of Neuroscience, San Raffaele Scientific Institute, Milan). Anti-GPR17 antibody for Western blotting analysis was produced and purified by Dr. Patrizia Rosa (National Research Council, CNR, Milan), who also provided us OliNeu cells. Authors wish to thank Dr. Giulia Magni for her help with analysis of data. MB was previously supported by the fellowship “Dote Ricerca Applicata” by Sanofi-Aventis and Regione Lombardia. She is currently supported by a fellowship from the Fondazione Umberto Veronesi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Ceruti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The study has been approved by the Council of the Department of Pharmacological and Biomolecular Sciences of the Università degli Studi di Milano (Milan, Italy). Experiments have been performed in accordance with National and European regulations regarding the protection of animals used for experimental and other scientific purposes (D.L. 26_2014; 2010/63/UE), as well as following the Society for Neuroscience’s policies on the Use of Animals and Humans in Neuroscience Research.

Additional information

Maria P. Abbracchio and Stefania Ceruti contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 117 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boccazzi, M., Lecca, D., Marangon, D. et al. A new role for the P2Y-like GPR17 receptor in the modulation of multipotency of oligodendrocyte precursor cells in vitro. Purinergic Signalling 12, 661–672 (2016). https://doi.org/10.1007/s11302-016-9530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9530-7

Keywords

  • NG2 cells
  • GPR17
  • Neurogenesis
  • Valproic acid
  • Oligodendrocyte precursor cells